

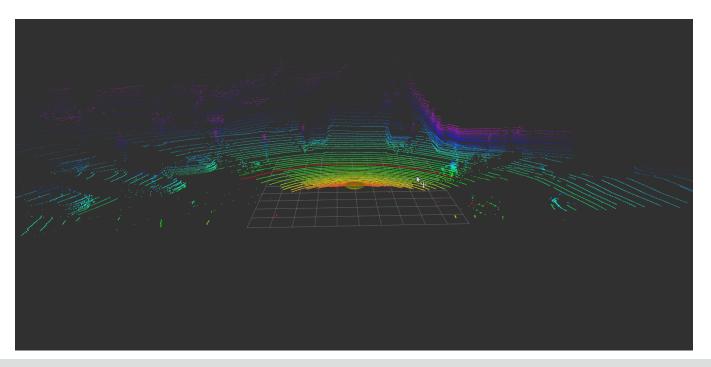
Institute of Systems Engineering Real Time Systems Group

Extrinsic Calibration Between a 3D Laser Scanner and a Camera Under Interval Uncertainty

Raphael Voges and Bernardo Wagner

SWIM 2019

https://rts.uni-hannover.de/ https://www.icsens.uni-hannover.de/


DFG Research Training Group (GRK2159) i.c.sens - Integrity and Collaboration in dynamic sensor networks RT.

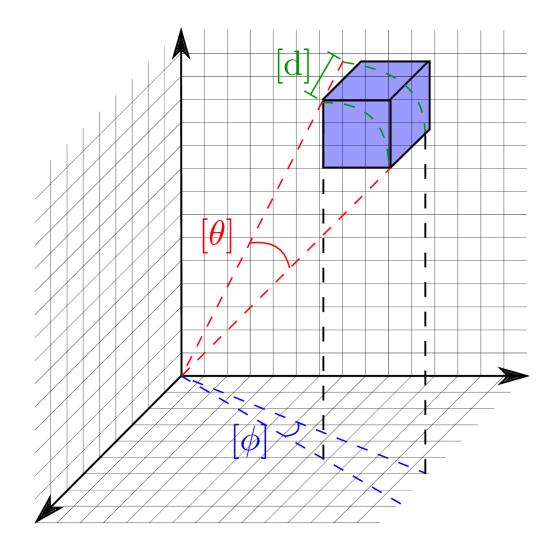
Institute of Systems Engineering - Real Time Systems Group

3D Camera-Laser Extrinsic Calibration

- Complementary information of the environment from camera and laser scanner
- Extrinsic parameters (rotation and translation) required to fuse information

3D Camera-Laser Extrinsic Calibration

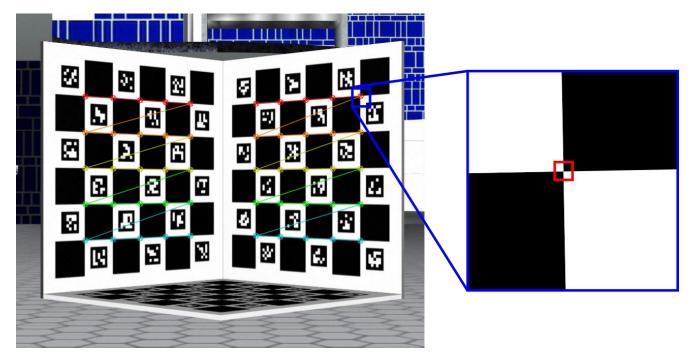
- Why intervals to model error?
 - Error distribution of sensors is often unknown (laser scanner, camera)
 - Unknown, systematic errors can be modeled (e.g. biased intrinsic camera parameters or laser distance measurements)
 - Consistent error propagation
 - Fused information is guaranteed
 - No initial value needed


ŔĽ

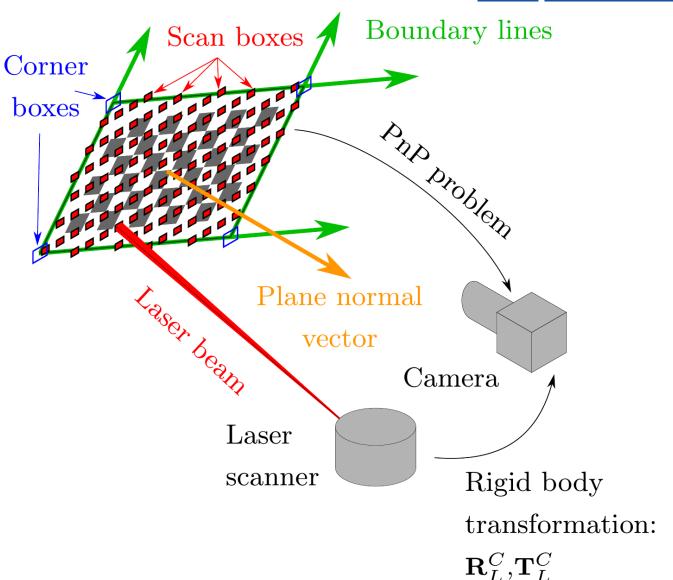
Institute of Systems Engineering - Real Time Systems Group

Modelling the Sensor Errors: Laser Scanner

- Interval for distance measurement: [d]
- Interval for angular components: $[\phi]$ and $[\theta]$
- Computation of 3D Cartesian coordinates



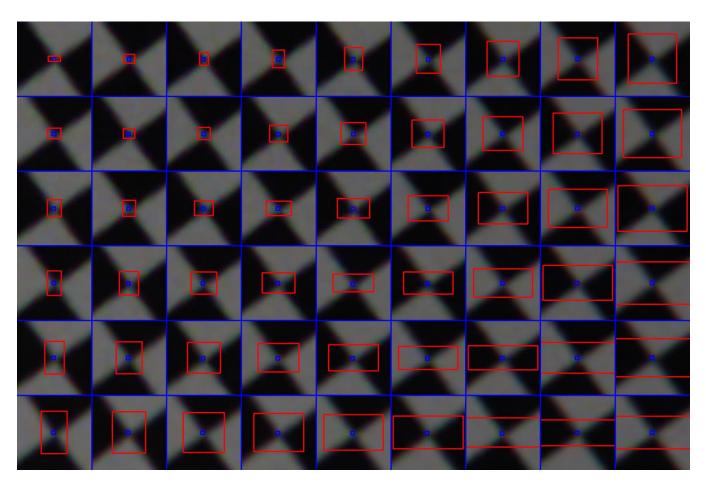
RT.


Modelling the Sensor Errors: Camera

- Interval boxes instead of point-valued feature detections
- Error bounds can be found from calibration process
 - Maximum reprojection error

General Idea

- Find corresponding features for laser scanner and camera on checkerboard
 - Plane parameters
 - Line parameters
 - 3D corner points
- Multiple checkerboard poses
- SIVIA with forward-backward contractors to find rotation and translation


Camera Feature Extraction: PnP Problem

$$\lambda \begin{pmatrix} u \\ v \\ 1 \end{pmatrix} = R \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} + T$$

• λ is the unknown scale factor

ISE

- (u, v, 1)^T is a corner on the image plane
- (x, y, z)^T is the corresponding 3D world point
- *R* (rotation) and *T* (translation) are the wanted extrinsic parameters
- SIVIA with contractors to find an enclosure for *R* and *T*
- No initial solution needed

Blue: detected image feature red: reprojected world point

RT3

Camera Feature Extraction: Plane Equation

- General plane equation: ax + by + cz + r = 0
- $(a, b, c)^T$ is the plane normal vector $(x, y, z)^T$ is a 3D point on the plane

Known three points on the plane:

$$X_{1} = R \cdot \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + T = T$$

$$X_{2} = R \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + T$$

$$X_{3} = R \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + T$$

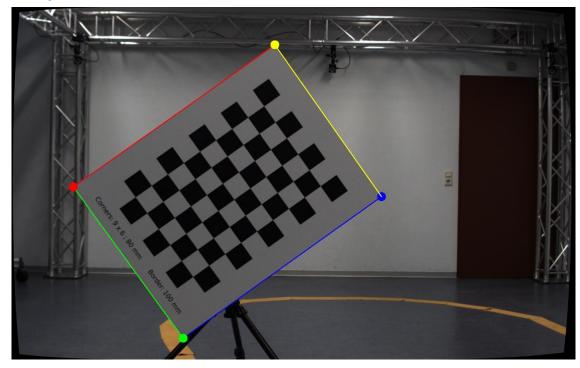
$$X_{3} = R \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + T$$

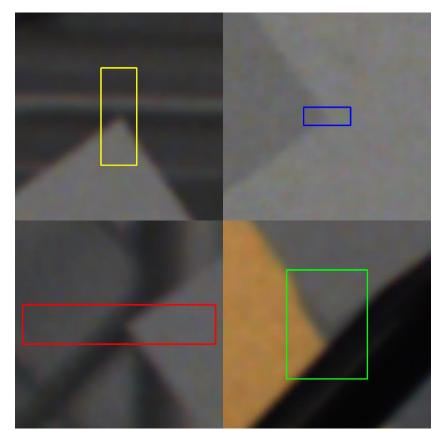
$$Vectors on plane:$$

$$\overrightarrow{X_{2}} = X_{2} - X_{1} = R \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} r_{11} \\ r_{21} \\ r_{31} \end{pmatrix}$$

$$\overrightarrow{X_{3}} = X_{3} - X_{1} = R \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} r_{12} \\ r_{22} \\ r_{32} \end{pmatrix}$$

$$Cross product results in plane normal:$$

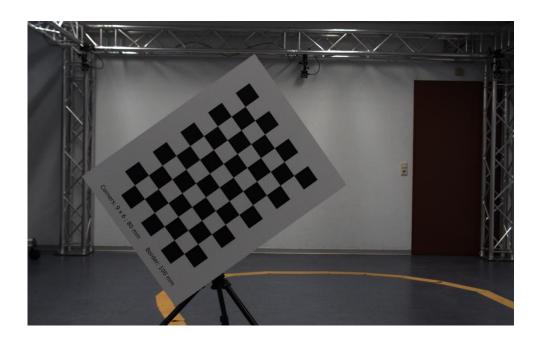

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} = \overrightarrow{X_{2}} \times \overrightarrow{X_{3}}$$

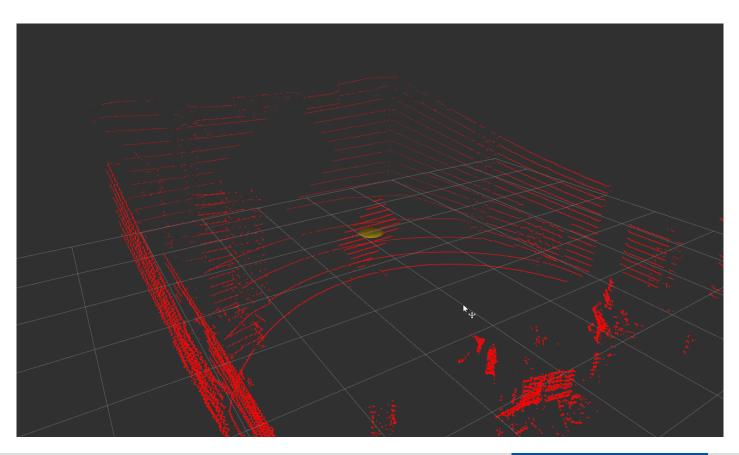

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} = \overrightarrow{X_{2}} \times \overrightarrow{X_{3}}$$

- Corner points are known in checkerboard coordinate system
- Transform corner points into camera coordinate system using R and T
- Line direction is the difference between two adjacent corner points

Leibniz Universität

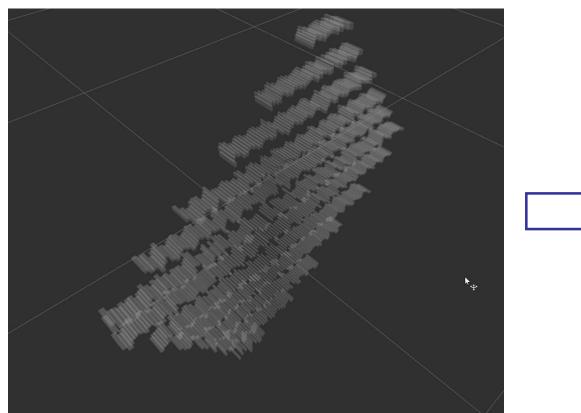
Hannover

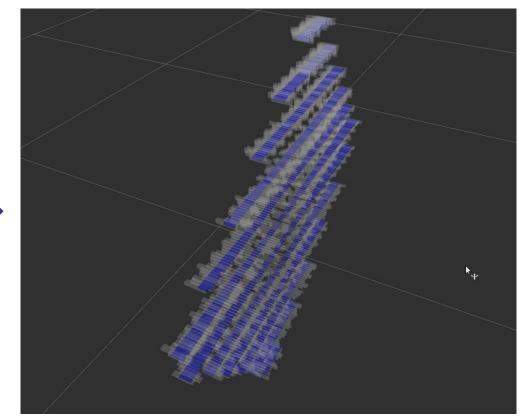



RT.

Laser Feature Extraction: Preliminary Steps

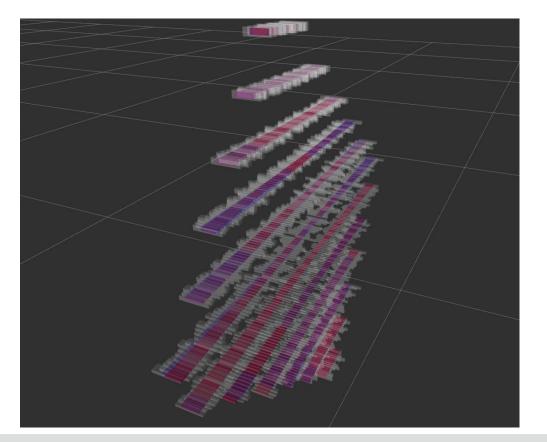
- Manually define 3D cube that contains checkerboard
- Remove scan lines with insufficient points
- Remove points on tripod using RANSAC

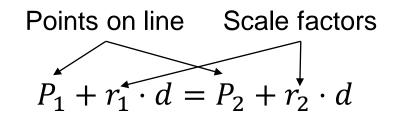




Laser Feature Extraction: Plane Fitting

- Plane equationUnit vectorConstraints:ax + by + cz + r = 0 $a^2 + b^2 + c^2 = 1$
- SIVIA + forward-backward contractor to find domains [a], [b], [c], [r]

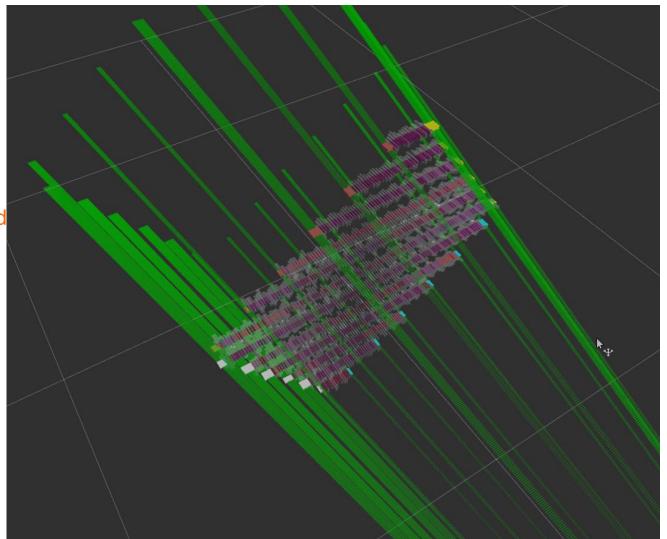




Laser Feature Extraction: Line Directions

- Wanted: scan line direction *d*
- Contract plane points with respect to line constraint

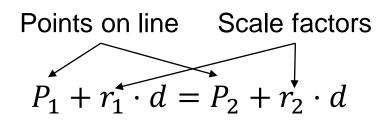
White: original boxes blue: after plane contraction red: after line contraction

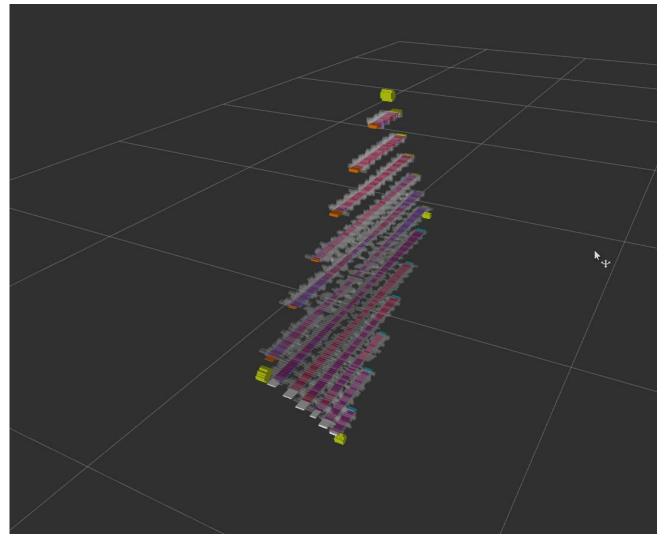


Institute of Systems Engineering - Real Time Systems Group

Laser Feature Extraction: Line Directions

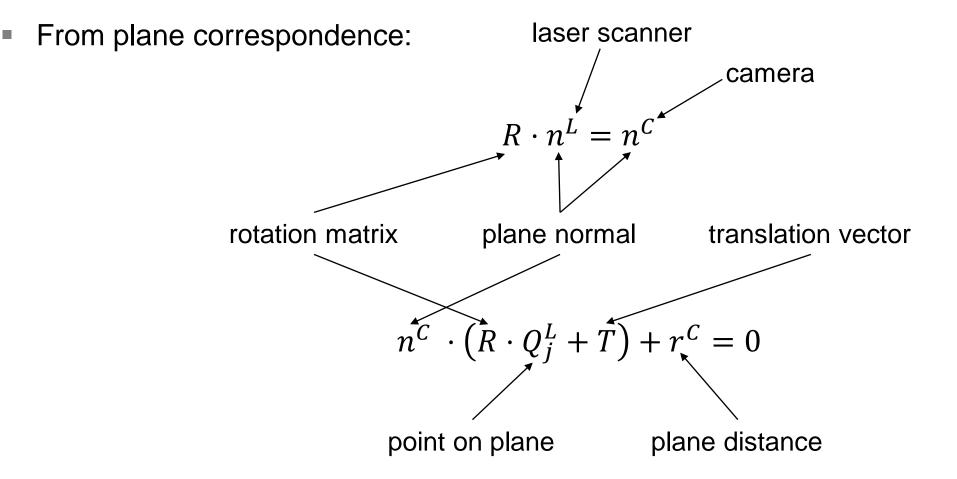
- Wanted: checkerboard border points
- Must be between last point on board and first point not on board
 - Intersection between two interval ^{Bord} lines: scan line and hypothetical laser ray
 - Results in box for border point




Institute of Systems Engineering - Real Time Systems Group

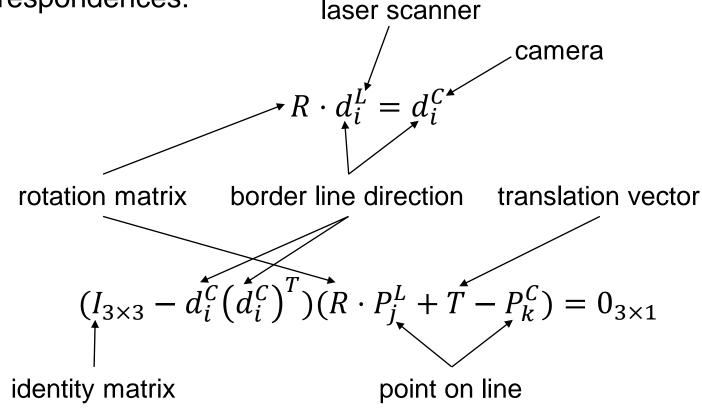
Laser Feature Extraction: Line Directions

- Wanted: checkerboard border line directions d^L and corner points C^L
- Fit line through border points to find d^L
- Interval line intersection to find C^L



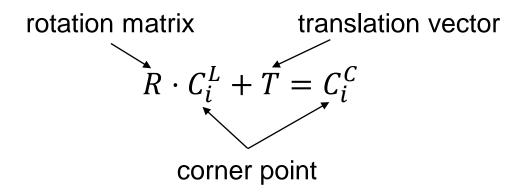
ŔΤ.

Finding the Extrinsic Parameters



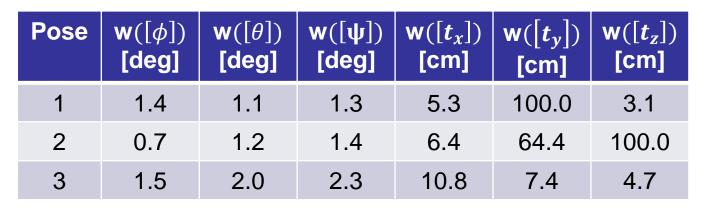
ŔΤ.

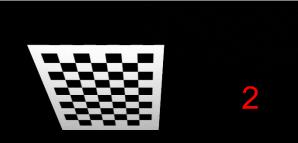
Finding the Extrinsic Parameters

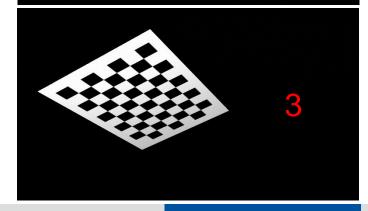

From line correspondences:

Finding the Extrinsic Parameters

From corner point correspondences:

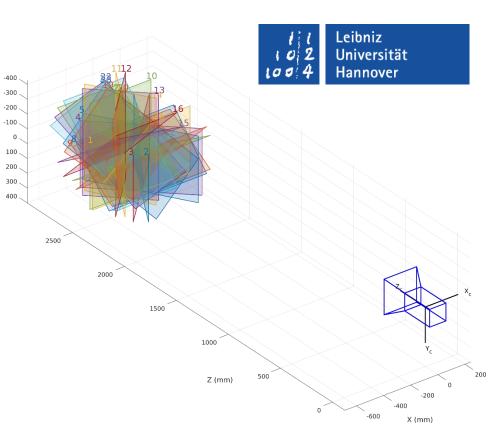



- SIVIA + forward-backward contractor to enclose domains for [R] and [T]
- Rotation matrix [R] is parametrized using Euler angles



Simulated data, three individual poses

Pose	[φ](Roll) [deg]	[θ] (Pitch) [deg]	[ψ] (Yaw) [deg]	[<i>t_x</i>] [cm]	[<i>t_y</i>] [cm]	[<i>t_z</i>] [cm]
True	90.0	0.0	0.0	-27.0	15.0	-12.0
1	[89.3,90.7]	[-0.6,0.5]	[-0.6,0.7]	[-29.7,-24.4]	[-35.0,65.0]	[-13.6,-10.5]
2	[89.6,90.3]	[-0.6,0.6]	[-0.7,0.7]	[-30.5,-24.1]	[-17.4,47.0]	[-62.0,38.0]
3	[89.2,90.7]	[-1.1,0.9]	[-1.1,1.2]	[-32.0,-21.2]	[11.2,18.6]	[-14.2,-9.5]



Institute of Systems Engineering - Real Time Systems Group

Results

- Simulated data, 27 checkerboard poses, distance ~2.5 m
- Laser error: [-3,3] cm; [-0.03,0.03] deg (horizontal and vertical)
- Camera error: [-0.3,0.3] px
- Guaranteed enclosure for extrinsic parameters
- No initial values needed

	$[\phi]$ (Roll) [deg]	$[\theta]$ (Pitch) [deg]	[ψ] (Yaw) [de	eg] [t_x] [c	m] [<i>t_y</i>]		[cm]	$[t_z]$ [cm]
True	90.0	0.0	0.0	-27.	0	15.0		-12.0
Interval	[89.6,90.3]	[-0.4,0.3]	[-0.1,0.3]	[-28.8,-2	25.0]	[13.1,16.7]		[-13.1,-11.0]
	$\mathbf{w}([\phi])$ [deg]	w ([θ]) [deg]	w([ψ]) [deg]	$w([t_x])$ [cm]	$w([t_y])$) [cm]	$\mathbf{w}([t_z])$ [c	m]
	0.7	0.7	0.4	3.8	3.	3.6 2.1		

Institute of Systems Engineering - Real Time Systems Group

Results

- Real data, 35 checkerboard poses, distance 2 3 m
- Laser error: [-3,3] cm; [-0.09,0.09] deg (horizontal); [-0.045,0.045] deg (vertical)
- Camera error: [-0.5,0.5] px

Method	d $[\phi]$ (Roll) [deg]		[θ] (Pitch) [deg]		[ψ] (Yaw) [deg]		[<i>t_x</i>] [cm]		[<i>t_y</i>] [cm]		[<i>t_z</i>] [cm]		
Interva	Interval [88.3,91.2]		1.2]	[-1.2,0.1]		[0.1,1.3]		[-27.6,-22.8]		[10.1,21.0]		[-14.2,-8.6]	
[Zhou201	[Zhou2018] 8		3	-0.		0	.7	-26.8		16.0		-	11.6
	$w([\phi])$ [deg]		$\mathbf{W}([heta]$	9]) [deg] w([ψ]) [deg] $w([t_x])$		[cm] $w([t_y])$ [cr		[cm]	$\mathbf{w}([t_z])$ [cm]	
2.9		2.9	1.3		1.2		4.8		10.9		5.6		

[Zhou2018] L. Zhou, Z. Li, and M. Kaess, "Automatic Extrinsic Calibration of a Camera and a 3D LiDAR Using Line and Plane Correspondences", in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Oct. 2018.

This work was supported by the German Research Foundation (DFG) as part of the Research Training Group i.c.sens [RTG 2159].

- How many checkerboard poses are needed for an accurate calibration?
 - Interval analysis allows to determine which poses are redundant or required
- 6 poses vs. 27 poses
 - Comparable accuracy, but less time for the experiment (and less computation time)

Poses	$[\phi]$ (Roll) [deg]	[<i>θ</i>] (Pitch) [deg]		[ψ] (Yaw) [deg]		[<i>t_x</i>] [cm] [t _y] [cm]	$[t_z]$ [cm]
6	[89.6,90.3]	[-0.4,0.5]		[-0.1,0.3]		[-29.6,-25	.0] [1	2.7,17.0]	[-13.1,-11.0]
27	[89.6,90.3]	[-0.4,0	.3]	[-0.1,0.3]		[-28.8,-25	.0] [1	3.1,16.7]	[-13.1,-11.0]
	Poses	w([φ]) [deg]	w([θ [deg		w([ψ]) [deg]	w([<i>t_x</i>]) [cm]	w([<i>t_y</i>]) [cm]	w([<i>t_z</i>]) [cm]	
	6	0.7	0.9)	0.4	4.6	4.3	2.1	
	27	0.7	0.7	,	0.4	3.8	3.6	2.1	