

Set-Membership Extrinsic Calibration of a 3D LiDAR and a Camera

Raphael Voges and Bernardo Wagner

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

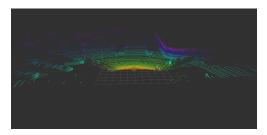
October 25-29, 2020

DFG Research Training Group (RTG 2159) i.c.sens - Integrity and Collaboration in Dynamic Sensor Networks

- Camera and laser scanner
 - Complementary information

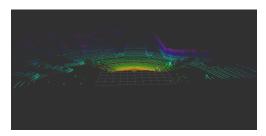
l l Leibniz l o 2 Universität l o o 4 Hannover

- Camera and laser scanner
 - Complementary information

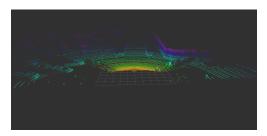


1 1 Leibniz 1 0 2 Universität 1 0 9 4 Hannover

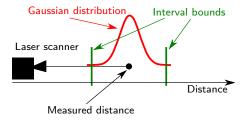
- Camera and laser scanner
 - Complementary information

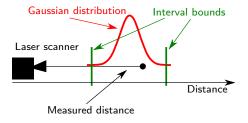


- Camera and laser scanner
 - Complementary information
- Extrinsic calibration parameters required to fuse information
 - Rigid body transformation

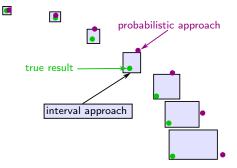


- Camera and laser scanner
 - Complementary information
- Extrinsic calibration parameters required to fuse information
 - Rigid body transformation
 - Uncertainties must be taken into account

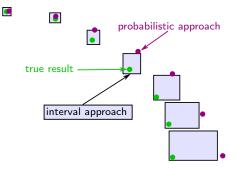



Motivation: Why Unknown But Bounded Errors?

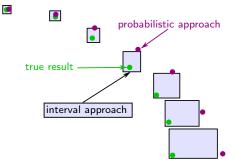
Error distribution is often unknown



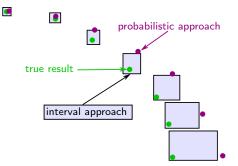
- Error distribution is often unknown
 - Unknown systematic errors



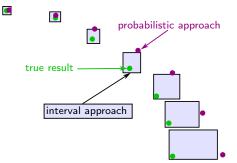
- Error distribution is often unknown
 - Unknown systematic errors
- Results can be guaranteed



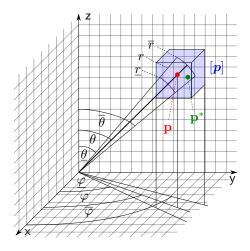
- Error distribution is often unknown
 - Unknown systematic errors
- Results can be guaranteed
 - Important for safety-critical systems

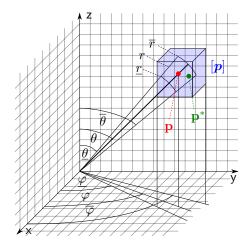


- Error distribution is often unknown
 - Unknown systematic errors
- Results can be guaranteed
 - Important for safety-critical systems
- Reverse view:
 - Dismiss infeasible solutions

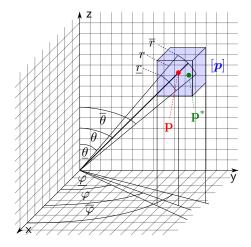


- Error distribution is often unknown
 - Unknown systematic errors
- Results can be guaranteed
 - Important for safety-critical systems
- Reverse view:
 - Dismiss infeasible solutions
- Computations are deterministic

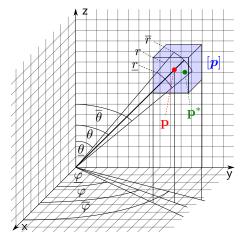

- Error distribution is often unknown
 - Unknown systematic errors
- Results can be guaranteed
 - Important for safety-critical systems
- Reverse view:
 - Dismiss infeasible solutions
- Computations are deterministic
 - Proofs become possible


Bounded Sensor Error Models: Laser Scanner

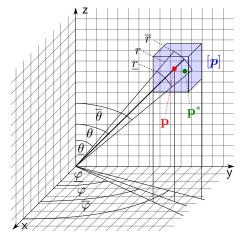
- Unknown but bounded errors for:



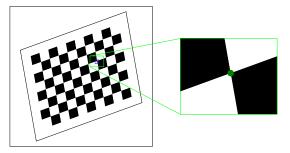
- Unknown but bounded errors for:
 - Distance measurement $[r] = [\underline{r}, \overline{r}]$

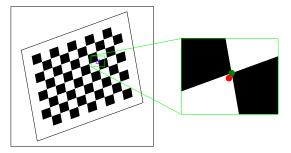


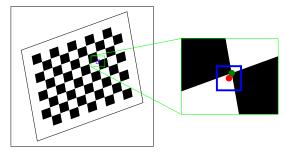
- Unknown but bounded errors for:
 - Distance measurement $[r] = [\underline{r}, \overline{r}]$
 - Angular components $[\theta] = [\underline{\theta}, \overline{\theta}]$ and $[\varphi] = [\underline{\varphi}, \overline{\varphi}]$

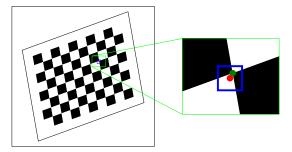


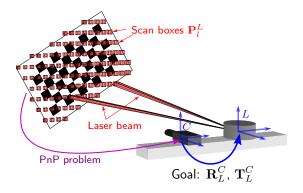
- Unknown but bounded errors for:
 - Distance measurement $[r] = [\underline{r}, \overline{r}]$
 - Angular components $[\theta] = [\underline{\theta}, \overline{\theta}]$ and $[\varphi] = [\underline{\varphi}, \overline{\varphi}]$
- Conversion into Cartesian coordinates

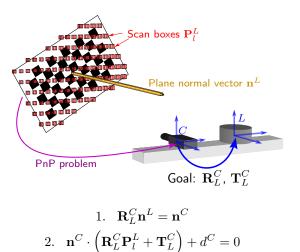

- Unknown but bounded errors for:
 - Distance measurement $[r] = [\underline{r}, \overline{r}]$
 - Angular components $[\theta] = [\underline{\theta}, \overline{\theta}]$ and $[\varphi] = [\underline{\varphi}, \overline{\varphi}]$
- Conversion into Cartesian coordinates
 - = 3D box that is guaranteed to contain the true 3D point: $\mathbf{p}^* \in [p]$

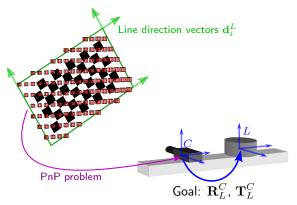

- Unknown but bounded errors:
 - Detection of checkerboard corners

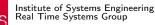

- Unknown but bounded errors:
 - Detection of checkerboard corners


- Unknown but bounded errors:
 - Detection of checkerboard corners

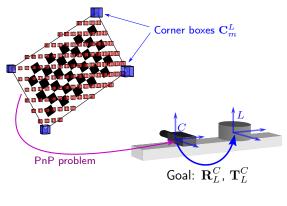

- Unknown but bounded errors:
 - Detection of checkerboard corners
- Error bounds:
 - From calibration process (maximum reprojection error)


- Solve PnP problem under interval uncertainty [1]
- Extract corresponding features on checkerboard:


- Solve PnP problem under interval uncertainty [1]
- Extract corresponding features on checkerboard:
 - Plane parameters

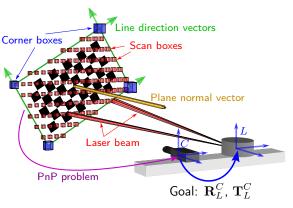


- Solve PnP problem under interval uncertainty [1]
- Extract corresponding features on checkerboard:
 - Plane parameters
 - Boundary line parameters



3.
$$\mathbf{R}_{L}^{C}\mathbf{d}_{i}^{L} = \mathbf{d}_{i}^{C}$$
4.
$$\left(\mathbf{I} - \mathbf{d}_{i}^{C}\left(\mathbf{d}_{i}^{C}\right)^{\mathsf{T}}\right)\left(\mathbf{R}_{L}^{C}\mathbf{Q}_{ij}^{L} + \mathbf{T}_{L}^{C} - \mathbf{Q}_{ik}^{C}\right) = \mathbf{0}$$

- Solve PnP problem under interval uncertainty [1]
- Extract corresponding features on checkerboard:
 - Plane parameters
 - Boundary line parameters
 - 3D corner points



5.
$$\mathbf{R}_{L}^{C}\mathbf{C}_{m}^{L} + \mathbf{T}_{L}^{C} = \mathbf{C}_{m}^{C}$$

- Solve PnP problem under interval uncertainty [1]
- Extract corresponding features on checkerboard:
 - Plane parameters
 - Boundary line parameters
 - 3D corner points
- Multiple checkerboard poses
- SIVIA with forward-backward contractors to compute [R^C_L] and [T^C_L]

Experimental Results

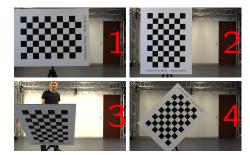
Real data

Experimental Results

- Real data
- Sensor error bounds
 - Laser scanner: data sheet
 - Camera: intrinsic calibration

l eihniz

Universität

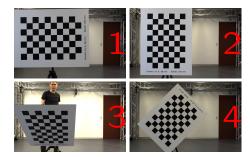

Hannover

Experimental Results

- Real data
- Sensor error bounds
 - Laser scanner: data sheet
 - Camera: intrinsic calibration
- Different checkerboard poses

Leibniz

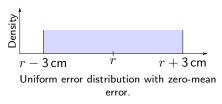
Universität


Hannover

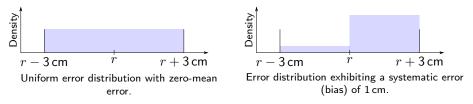
Experimental Results

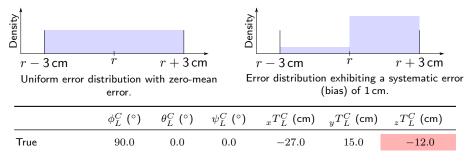
- Individual checkerboard poses
- Geometry influences accuracy
- Width (accuracy) of computed parameters

Pose	$w([\phi_L^C])$ (°)	$w([\theta_L^C])$ (°)	$w([\psi^C_L])$ (°)	$w([_xT_L^C])$ (cm)	$w([_yT_L^C])~({\rm cm})$	$w([_zT_L^C])~({\rm cm})$
1	2.9	2.2	1.9	9.8	100.0	3.5
2	2.4	2.6	1.6	11.1	100.0	4.2
3	1.0	2.4	2.9	11.1	88.5	100.0
4	4.9	5.1	1.0	23.4	21.4	5.9



- Simulated data
- Two different error distributions for the laser scanner distance measurement

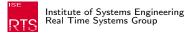

- Simulated data
- Two different error distributions for the laser scanner distance measurement


- Simulated data
- Two different error distributions for the laser scanner distance measurement

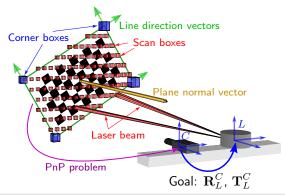
- Simulated data
- Two different error distributions for the laser scanner distance measurement

- Simulated data
- Two different error distributions for the laser scanner distance measurement

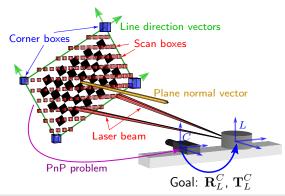
Density	·		Density			
$r-3\mathrm{cm}$	\dot{r}	$r + 3 \mathrm{cm}$	÷ n	$r-3\mathrm{cm}$	r	$r + 3 \mathrm{cm}$
Uniform error di	ean Er	Error distribution exhibiting a systematic error (bias) of 1 cm.				
	ϕ^C_L (°)	$ heta_L^C$ (°)	ψ^C_L (°)	$_{x}T_{L}^{C}$ (cm)	$_{y}T_{L}^{C}$ (cm)	$_{z}T_{L}^{C}$ (cm)
True	90.0	0.0	0.0	-27.0	15.0	-12.0
Zhou [2], no bias	90.01	-0.01	-0.04	-27.00	14.96	-11.91

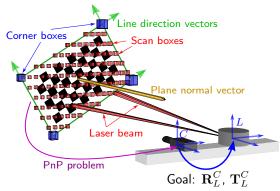

- Simulated data
- Two different error distributions for the laser scanner distance measurement

$r - 3 \mathrm{cm}$	r	r + 3 cm	Density	r – 3 cm	r	<i>r</i> +3 cm
Uniform error distribution with zero-mean Error distribution exhibiting error. (bias) of 1 c					n exhibiting a (bias) of 1 cm	5
	ϕ^C_L (°)	$ heta_L^C$ (°)	ψ^C_L (°)	$_{x}T_{L}^{C}$ (cm)	$_{y}T_{L}^{C}$ (cm)	$_{z}T_{L}^{C}$ (cm)
True	90.0	0.0	0.0	-27.0	15.0	-12.0
Zhou [2], no bias	s 90.01	-0.01	-0.04	-27.00	14.96	-11.91
Our, no bias	[89.6, 90.3]	[-0.4, 0.3]	[-0.1, 0.3]	[-28.8, -25.0]	[13.1, 16.7]	[-13.1, -11.0]
Zhou [2], bias	89.98	0.01	0.04	-27.09	14.88	-12.97
Our, bias	[89.7, 90.3]	[-0.4, 0.5]	[-0.4, 0.3]	[-29.5, -25.0]] [13.0, 16.8]	[-13.1, -10.9]



- Set-membership extrinsic calibration of a 3D LiDAR and a camera


- Set-membership extrinsic calibration of a 3D LiDAR and a camera
 - Extraction of checkerboard features under interval uncertainty



- Set-membership extrinsic calibration of a 3D LiDAR and a camera
 - Extraction of checkerboard features under interval uncertainty
- Calibration parameters sufficiently accurate for sensor fusion

- Set-membership extrinsic calibration of a 3D LiDAR and a camera
 - Extraction of checkerboard features under interval uncertainty
- Calibration parameters sufficiently accurate for sensor fusion
- Approach is compatible with unknown systematic errors

References

- R. Voges and B. Wagner, "Timestamp Offset Calibration for an IMU-Camera System Under Interval Uncertainty," in *IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)*, Madrid, Spain, Oct. 2018.
- [2] L. Zhou, Z. Li, and M. Kaess, "Automatic Extrinsic Calibration of a Camera and a 3D LiDAR Using Line and Plane Correspondences," in *IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)*, Madrid, Spain, Oct. 2018.

This work was supported by the German Research Foundation (DFG) as part of the Research Training Group i.c.sens [RTG 2159].