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Motivation: Complementary Sensors

Camera: reidentifiable 2D features

LiDAR: accurate distance measurements
Sensor fusion: reidentifiable 3D features
Uncertainty of fused information must be known for
subsequent tasks
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Motivation: Why Unknown But Bounded Errors?

Error distribution is often unknown

Unknown systematic errors

Results can be guaranteed

Important for safety-critical systems

Reverse view:
Dismiss infeasible solutions

Computations are deterministic

Proofs become possible

Laser scanner

Measured distance

Distance

Gaussian distribution Interval bounds
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Bounded Sensor Error Models: Laser Scanner

Unknown but bounded errors for:

Distance measurement [r] = [r, r]
Angular components [θ] = [θ, θ] and [ϕ] = [ϕ,ϕ]

Conversion into Cartesian coordinates

3D box that is guaranteed to contain the true
3D point: p∗ ∈ [p]
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Bounded Sensor Error Models: Camera

Unknown but bounded errors:
Detection and matching of image
features

Error bounds:
Empirically under consideration of
outliers
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Visual-LiDAR Sensor Fusion
Goal: Assign distance information to 2D image features

Project 3D laser scan boxes onto the 2D image plane
Extrinsic transformation between camera and laser scanner required
Sensor clocks are assumed to be synchronized

Traditional projection without considering
uncertainties.

Interval boxes enclosing the projected laser scan
points. The color of each box corresponds to

the midpoint of the depth interval.
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Visual-LiDAR Sensor Fusion

Set of all projected scan boxes that have a non-empty intersection with the image feature:

Sj = { i ∈ {1, . . . , Nl} | [X̃C

i ] ∩ [X̃
C

j ] 6= ∅ }

Compute the z-coordinate (depth) of the image
feature as the union over the z-coordinates of all
overlapping scan boxes:

[zCj ] =
⋃
i∈Sj

[zCi ]

Results in re-identifiable 3D features with
information about accuracy
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Visual-LiDAR Sensor Fusion

Exemplary results of the approach for Visual-LiDAR data fusion

Colored by depth (red: close, blue: distant). Features
without depth information are colored pink.

Colored by depth accuracy
(red: accurate, blue: inaccurate).
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Guaranteed Visual-LiDAR Odometry
General idea

Dead reckoning

Visual-LiDAR sensor fusion
Corresponding 3D boxes

Integrate angular velocities to constrain
rotation
Compute 6 DOF rigid body transformation
under interval uncertainty

Constraint Satisfaction Problem:
forward-backward contractors [1]

IMU
rotation

Rigid body
transformation

t1 t2

3D
points

3D
points
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Guaranteed Visual-LiDAR Odometry
Concept of keyframes

Estimate motion relative to the last keyframe k1 until we have to insert a new keyframe k2
As few keyframes as possible, but as many as necessary

k1

Motion estimation

f1 f2 f3 f4 f5 f6 f7 k2

Dynamic insertion of keyframes depending on the 6D pose uncertainty
High pose uncertainty ⇔ insufficient constraints ⇔ inaccurate 3D features
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Experimental Results
Dead reckoning without error propagation at keyframes

Quantitative results

Dataset Correct Volume Area Rotation Features Distance per Inconsistencies

(%) (m3) (m2) accuracy (◦) w. depth keyframe (m) of [2](%)

[3] 100 0.77 1.30 0.39 105 11.35 29.9

0009 [4] 97.8∗ 1.52 1.81 0.21 201 9.57 16.1

0023 [4] 97.7∗ 0.91 1.39 0.19 173 11.91 18.2

0106 [4] 98.3∗ 0.94 1.32 0.22 170 11.48 12.2

Desired guarantees are provided
Inconsistencies of state-of-the-art approach [2] are reliably detected
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Experimental Results
Exemplary image features for a detected inconsistency

Stochastic features colored by depth
(red: close, blue: distant, violet: no depth).

Interval features colored by depth midpoint
(red: close, blue: distant, violet: no depth).

Interval features colored by uncertainty
(red: certain, blue: uncertain).
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Conclusions

Visual-LiDAR sensor fusion
Visual features are augmented by distance information
Sensor and transformation errors are considered and propagated
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Reliably encloses the true localization result
Inconsistencies of stochastic approach can be detected

Future Work

Incorporate global constraints (e.g., GNSS, SLAM) to reduce drift
Restrict stochastic methods to interval box
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