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Motivation: Need for Visual-LiDAR Odometry

Localization (dead reckoning)
of mobile robots

Urban canyon

GNSS not available/reliable

Many visual features for
localization

Motion estimation difficult
using monocular images

Distance difficult to estimate
from 2D images
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Motivation: Complementary Sensors

Camera, laser scanner and IMU

Complementary information

Spatiotemporal calibration parameters
required to fuse information

Extrinsic transformation
Time offset between sensor clocks
Uncertainties must be taken into account

PhD thesis defense 3 / 43Raphael Voges



Institute of Systems Engineering
Real Time Systems Group

Motivation: Why Unknown But Bounded Errors?

Error distribution is often unknown

Unknown systematic errors

Results can be guaranteed

Important for safety-critical systems

Reverse view:

Dismiss infeasible solutions

Computations are deterministic

Proofs become possible

Laser scanner

Measured distance

Distance

Gaussian distribution Interval bounds

true position

probabilistic approach

interval approach
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Set Inversion Via Interval Analysis (SIVIA)

Goal: Invert (non-linear) function f (e.g. measurement function) to find a
solution set X consistent with an observation Y

X = {x ∈ R
n | f(x) ∈ Y } = f

−1(Y)

Idea: Branch and bound

Problem: High computational complexity (exponential on number of
variables)
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Contractors

Interval computations to contract the initial box to a smaller box

Without losing part of the solution

Possibly non-linear functions (constraints) link the variables

Forward-backward contractor
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Guaranteed Visual-LiDAR Odometry
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Bounded Sensor Error Models: Laser Scanner

Unknown but bounded errors for:

Distance measurement [r] = [r, r]
Angular components [θ] = [θ, θ] and
[ϕ] = [ϕ,ϕ]

Conversion into Cartesian coordinates

3D box that is guaranteed to contain
the true 3D point: p∗

∈ [p]
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Bounded Sensor Error Models: Camera

Unknown but bounded errors:

Detection of checkerboard
corners
Detection and matching of
image features

Error bounds:

From calibration process
(maximum reprojection
error)
Empirically under
consideration of outliers
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Bounded Sensor Error Models: IMU

Three different error sources for gyroscope measurements

ω

ω

ω +∆b

t

Bias/systematic error

ω

ω

ω +∆n

t

Noise (simplified; technically
discontinuous)

ω

ω

ω +∆s · ω

t

Scale factor

[ω](t) = ω(t) + [∆b] + [∆n] + [∆s] ω(t)

Integration of velocity measurements to compute rotation

Rotation uncertainty increases due to drift

measured
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Spatiotemporal Calibration Between Camera and IMU

t0 → t

C0

I0
C

I

∀t : RC0

C (t) =

(

RI
C

)⊺

· RI0
I (t+ τ ) · RI

C ,

RC0

C (·) ∈ [RC0

C ](·),RI0
I (·) ∈ [RI0

I ](·),RI
C ∈ [RI

C ], τ ∈ [τ ].

measured unknown
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Spatiotemporal Calibration Between Camera and IMU

∀t : RC0

C (t) =
(

RI
C

)⊺

·RI0
I (t+ τ) ·RI

C ,

RC0

C (·) ∈ [RC0

C ](·),RI0
I (·) ∈ [RI0

I ](·),RI
C ∈ [RI

C ], τ ∈ [τ ].

Decompose the constraint into:

∀t : R̂
I0
I (t) =

(

RI
C

)⊺

·R
I0
I (t) ·RI

C (only multiplication),

∀t : R
C0

C (t) = R̂
I0
I (t+ τ) (new contractor required).
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Time Delay Contractor Cdelay
Generic contractor for the constraint x(t) = y(t+ τ)
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[x](t)
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Cdelay

−−−−→
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⋂
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[y]−1 ([x] (t1))− t1
)
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Spatiotemporal Calibration Between Camera and IMU
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Extrinsic Calibration Between Camera and Laser Scanner
Extract corresponding
features on checkerboard:

Plane parameters
Boundary line
parameters
3D corner points

Multiple checkerboard
poses

SIVIA with
forward-backward
contractors to compute
[RC

L ] and [TC
L ]

Corner boxes

Plane normal vector

Laser beam

Scan boxes

Line direction vectors

Goal: RC
L , TC

L

PnP problem

C

L

1. RC
Ln

L = nC

2. nC ·
(

RC
LP

L
l +TC

L

)

+ dC = 0

PhD thesis defense 17 / 43Raphael Voges



Institute of Systems Engineering
Real Time Systems Group

Guaranteed Visual-LiDAR Odometry

Camera

Laser scanner

Inertial Mea-
surement Unit

Bounded
Sensor Error

Models

Undistorted
images and

intrinsic
parameters

Spherical

coordinates

Angular
velocities

Spatiotemporal
Calibration

Visual-LiDAR
Sensor Fusion

Guaranteed
Visual-LiDAR

Odometry

Camera:
Image pixel

boxes

Laser:
3D scan
boxes

IMU:
Orientation

change

Extrinsic
laser-

camera
parameters

Spatiotemporal
camera-imu
parameters

Fused 3D
feature boxes

PhD thesis defense 18 / 43Raphael Voges



Institute of Systems Engineering
Real Time Systems Group

Visual-LiDAR Sensor Fusion

Goal: Assign distance information to 2D image features

Project 3D laser scan boxes onto the 2D image plane

Extrinsic transformation between camera and laser scanner required

Sensor clocks are assumed to be synchronized

Traditional projection without
considering uncertainties.

Interval boxes enclosing the projected
laser scan points. The color of each box

corresponds to the midpoint of the
depth interval.
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Visual-LiDAR Sensor Fusion

Set of all projected scan boxes that have a non-empty intersection with the
image feature:

Sj = { i ∈ {1, . . . , Nl} | [X̃
C

i ] ∩ [X̃
C

j ] 6= ∅ }

Compute the z-coordinate (depth) of
the image feature as the union over
the z-coordinates of all overlapping
scan boxes:

[zCj ] =
⋃

i∈Sj

[zCi ]

Results in re-identifiable 3D features
with information about accuracy
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Visual-LiDAR Sensor Fusion

Exemplary results of the approach for Visual-LiDAR data fusion

Colored by depth (red: close, blue:
distant). Features without depth

information are colored pink.

Colored by depth accuracy
(red: accurate, blue: inaccurate).
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Guaranteed Visual-LiDAR Odometry
General idea

Dead reckoning

Visual-LiDAR sensor fusion

Corresponding 3D points
Extrinsic transformation required

Integrate angular velocities to
constrain rotation

Spatiotemporal calibration
parameters required

Compute 6 DOF rigid body
transformation under interval
uncertainty

IMU

rotation

Rigid body
transformation

t1 t2

3D
points

3D
points
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Guaranteed Visual-LiDAR Odometry
Rigid body transformation

Distance information found for the feature i at both t1 and t2:

Xt1
i = Rt1

t2
·Xt2

i +Tt1
t2

Distance information only at t2: zt1i X̃
t1

i = Rt1
t2
·Xt2

i +Tt1
t2

No distance information at all: zt1i X̃
t1

i = Rt1
t2
· zt2i X̃

t2

i +Tt1
t2

normalized image coordinatesunknown z-coordinate

Forward-backward contractors for every feature i

Intersection of those contractor allows to contract [Rt1
t2
] and [Tt1

t2
]

Initialization: [Rt1
t2
] set using integrated angular velocity measurements

Initialization: [Tt1
t2
] = ([−∞,∞], [−∞,∞], [0,∞])

Consideration of outliers by using a relaxed intersection
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Guaranteed Visual-LiDAR Odometry
Concept of keyframes

Estimate motion relative to the last keyframe k1 until we have to insert a new
keyframe k2

As few keyframes as possible, but as much as necessary

k1

Motion estimation

f1 f2 f3 f4 f5 f6 f7 k2

Dynamic insertion of keyframes depending on the 6D pose uncertainty

High pose uncertainty ⇔ insufficient constraints ⇔ inaccurate 3D features
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Experimental Results
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Spatiotemporal Calibration Between Camera and IMU

Real data

Setup rotated by hand for a few seconds

Sensor error bounds

IMU: data sheet
Camera: intrinsic calibration

Different trials:

1. Rotation around one axis only
2. Low rotation speed
3. Medium rotation speed
4. High rotation speed
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Spatiotemporal Calibration Between Camera and IMU

Different trials:

1. Rotation around one axis only
2. Low rotation speed
3. Medium rotation speed
4. High rotation speed

Assuming the extrinsic 3D rotation to be known
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Spatiotemporal Calibration Between Camera and IMU

Different trials:

1. Rotation around one axis only
2. Low rotation speed
3. Medium rotation speed
4. High rotation speed

Trial [τ ] (ms) w([τ ]) (ms) w([θ]) (◦)

1 [43.0, 65.4] 22.4 100.72

2 [27.3, 68.4] 41.1 12.77

3 [35.2, 57.6] 22.4 12.24

4 [37.1, 51.8] 14.7 12.93
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Extrinsic Calibration Between Camera and Laser Scanner

Real data

Sensor error bounds

Laser scanner: data sheet
Camera: intrinsic calibration

Different checkerboard poses

1 2

3 4

PhD thesis defense 31 / 43Raphael Voges



Institute of Systems Engineering
Real Time Systems Group

Extrinsic Calibration Between Camera and Laser Scanner

Individual checkerboard poses

Geometry influences accuracy

Width (accuracy) of computed
parameters

1 2

3 4

Pose w([φCL ]) (◦) w([θCL ]) (◦) w([ψC
L ]) (◦) w([xT

C
L ]) (cm) w([yT

C
L ]) (cm) w([zT

C
L ]) (cm)

1 2.9 2.2 1.9 9.8 100.0 3.5

2 2.4 2.6 1.6 11.1 100.0 4.2

3 1.0 2.4 2.9 11.1 88.5 100.0

4 4.9 5.1 1.0 23.4 21.4 5.9
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Extrinsic Calibration Between Camera and Laser Scanner
Influence of systematic errors

Simulated data

Two different error distributions for the laser scanner distance measurement

r r + 3 cmr − 3 cm

D
en

si
ty

Uniform error distribution with zero-mean
error.

r r + 3 cmr − 3 cm

D
en

si
ty

Error distribution exhibiting a systematic error
(bias) of 1 cm.

φCL (◦) θCL (◦) ψC
L (◦) xT

C
L (cm) yT

C
L (cm) zT

C
L (cm)

True 90.0 0.0 0.0 −27.0 15.0 −12.0

Zhou [1], no bias 90.01 −0.01 −0.04 −27.00 14.96 −11.91

Our, no bias [89.6, 90.3] [−0.4, 0.3] [−0.1, 0.3] [−28.8,−25.0] [13.1, 16.7] [−13.1,−11.0]

Zhou [1], bias 89.98 0.01 0.04 −27.09 14.88 −12.97

Our, bias [89.7, 90.3] [−0.4, 0.5] [−0.4, 0.3] [−29.5,−25.0] [13.0, 16.8] [−13.1,−10.9]
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Guaranteed Visual-LiDAR Odometry
i.c.sens dataset [2] with error bounds derived from:

IMU + LiDAR: data sheet
Camera: empirical values (maximum 5% outliers)
Extrinsic calibration between camera and LiDAR: proposed approach
Time offset between camera and IMU: proposed approach
Extrinsic calibration between camera and IMU: i.c.sens calibration

Keyframe insertion once uncertainty exceeds 5m
2

Camera

Mobile mapping
system for ground
truth

LiDAR

IMU

Image credit: Sören Vogel
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Guaranteed Visual-LiDAR Odometry
Dead reckoning with error propagation at keyframes

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

8

4

0

x (m) 64 z (m)

true solution
interval localization result
interval midpoints
keyframe
comparable state-of-the-art approach

Desired guarantees are provided

Inconsistencies of the state-of-the-art approach [3, 4] can be detected

after 10 s: area of 18m2 and a volume of 52m3

No "global" constraints ⇒ uncertainty accumulates quickly (drift)
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Guaranteed Visual-LiDAR Odometry
Dead reckoning without error propagation at keyframes

Uncertainty is "reset" at every keyframe

Quantitative results

Correct Volume Area Rotation Features Distance per Inconsistencies

(%) (m3) (m2) accuracy (◦) w. depth keyframe (m) (%)

100 0.77 1.30 0.77 105 11.35 29.9

Desired guarantees are provided

Inconsistencies of state-of-the-art approach [3, 4] are reliably detected
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Guaranteed Visual-LiDAR Odometry

Relative error for a smaller
section (50 s) of the
experiment

Zero is ground truth

Color coding:

lower and upper interval
bounds
their respective midpoints
comparable state-of-the-art
approach
Insertion of a keyframe:
vertical gray line
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Guaranteed Visual-LiDAR Odometry
Exemplary image features for a detected inconsistency

Stochastic features colored by depth

(red: close, blue: distant, violet: no depth).

Interval features colored by depth midpoint

(red: close, blue: distant, violet: no depth).

Interval features colored by uncertainty

(red: certain, blue: uncertain).
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Conclusions
Spatiotemporal calibration between camera and IMU

Introduction of the time delay contractor Cdelay

Time offset can be determined reasonably accurate

Extrinsic rotation too uncertain for sensor fusion

Motion range is limited
Uncertainty of IMU rotation estimates grows too quickly
Usage of angular velocities to avoid integration

[x](·)

[y](·)

[x](t1)

[y]−1([x](t1))t1 t
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Conclusions
Extrinsic calibration between camera and laser scanner

Interval-based algorithm for the Perspective-n-Point (PnP) problem

Extraction of checkerboard features under interval uncertainty

Calibration parameters sufficiently accurate for sensor fusion

Corner boxes

Plane normal vector

Laser beam

Scan boxes

Line direction vectors

Goal: RC
L , TC

L

PnP problem

C
L
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Conclusions
Guaranteed Visual-LiDAR Odometry

New approach for dead reckoning using camera, laser scanner and IMU

Consideration of all error sources

Bounded sensor error models
Bounded spatiotemporal calibration parameters

Uncertainty grows quickly ("drift")

Global constraints required in the future

Desired guarantees are obtained

Uncertainty of pose estimates can be assessed

Allows warnings if uncertainty grows too large (integrity)

Faults of state-of-the-art approach can be detected

Combination with probabilistic methods in the future
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