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Interval-Based Visual-LiDAR Sensor Fusion

Raphael Voges and Bernardo Wagner

Abstract—Since cameras and Light Detection and Ranging
(LiDAR) sensors provide complementary information about the
environment, it is beneficial for mobile robot localization to
fuse their information by assigning distances measured by the
LiDAR to visual features detected in the image. However, existing
approaches neglect the uncertainty of the fused information or
model it in an optimistic way (e.g. without taking extrinsic
calibration errors into account). Since the actual distribution of
errors during sensor fusion is often unknown, we assume to only
know bounds (or intervals) enclosing the errors. Consequently,
we propose to use interval analysis to propagate the error from
the input sources to the fused information in a straightforward
way. To show the applicability of our approach, we use the fused
information for dead reckoning. Since interval analysis is used,
the result of our approach are intervals that are guaranteed to
enclose the robot’s true pose. An evaluation using real data shows
that we are indeed able to localize the robot in a guaranteed way.
This enables us to detect faults of an established approach, which
neglects the uncertainty of the fused information, in three out of
ten cases.

Index Terms—Sensor Fusion, Formal Methods in Robotics and
Automation, Localization, Interval Analysis

I. INTRODUCTION

N the case of missing GNSS information, mobile robots

have to localize using different sensors such as cameras
or LiDARs. While the camera provides rich features that can
be reidentified, the depth (or distance) of features is hard to
determine robustly and is “liable to drift over time” [1]. In
contrast, the LiDAR is able to accurately measure distances,
but does not provide easily reidentifiable features. To fuse
information from both sensors, existing approaches assign
distances measured by the LiDAR to individual image features.
This results in 3D features that can be reidentified in consec-
utive images. However, most approaches do not propagate the
sensor and the inter-sensor (e.g. the transformation between
sensor coordinate systems) errors consistently during sensor
fusion.

This leads to two problems. First, the accuracy of the fused
3D features cannot be assessed, and therefore these features
cannot be weighted according to their reliability for robot
localization. Moreover, the accuracy of further results based
on these features cannot be determined either. Second, the
transformation between the sensor coordinate systems, which
is required to fuse information, is assumed to be known
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Fig. 1. Two image features and projected laser scan boxes that are colored
by depth (red: close, blue: distant). Since the yellow image feature intersects
only scan boxes of similar depths, we can accurately compute its depth. In
contrast, the green image feature intersects scan boxes from both fore- and
background, and thus its depth uncertainty will be large.

without error. However, this transformation is usually only
known up to some accuracy since it needs to be determined be-
forehand during an extrinsic calibration using sensor data [2].
Depending on the error of the estimated transformation, scan
points and image features corresponding to different objects
might be fused, thereby creating incorrectly fused 3D features.

To overcome these problems, we propose to take all sensor
and inter-sensor for sensor fusion of camera and LiDAR into
account. However, the true error distribution of off-the-shelf
sensors is generally unknown or depends on the environment.
For example, the incidence angle and the reflectivity of the
surface influence the distance measurement of a LiDAR [3].
Similarly, the accuracy with which image features can be
reidentified in consecutive images depends, for example, on
the image blur and the environment. Therefore, we propose
to use interval analysis [4] to model all errors and introduce
bounded error models for camera and LiDAR (cf. Section IV).

In contrast to stochastic models, the idea is to assume an
unknown but bounded error for every input source which
means that we assume to not know exact measurement values
but only an interval that is guaranteed to contain the true
value. Consequently, as Fig. 1 shows, image features and laser
scan data are no longer points but boxes. When trying to find
the distance of an image feature, modeling it as an interval
allows us to dynamically determine all surrounding eligible
laser scan points (namely all points intersecting the image
feature box) instead of arbitrarily selecting the n closest points.
Since these laser scan points are also modeled using intervals,
we can compute an upper and lower bound for the depth of
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the feature, taking the “worst case”, i.e. the maximum error,
into account. Consequently, the uncertainty of the 3D feature
results directly from the sensor and inter-sensor uncertainties.
Section V introduces our approach.

Subsequently, we employ the fused 3D features to perform
dead reckoning based on camera and LiDAR data (also known
as visual-LiDAR odometry), i.e. incremental localization start-
ing from an arbitrary position, of a mobile robot. An Inertial
Measurement Unit (IMU) is used to initially constrain the
rotation. In Section VI we formulate the dead reckoning
problem as a Constraint Satisfaction Problem (CSP) and solve
it using interval analysis tools. Under the assumption of correct
error bounds, our approach allows us to compute an interval
box which is guaranteed to contain the robot’s true pose. Still,
outliers may occur (e.g. due to incorrect feature matches), but
can be taken into account. If the true pose is not enclosed by
the interval box, we can trace the error directly back to the
incorrectly assumed error bounds, since all computations are
deterministic. Consequently, our approach is especially useful
for safety-critical systems (e.g. autonomous driving) in which
we want to guarantee results under given assumptions and,
in case of an error, want to identify the wrong assumption
leading to the error. Finally, we show the feasibility of our
method using real data (cf. Section VII).

II. RELATED WORK

There are two different ways to fuse information from
camera and LiDAR. The simpler approach is to independently
extract and track features from both LiDAR and image data be-
fore combining those features in a common Extended Kalman
Filter (EKF) [5]. However, this approach still suffers from
the drawbacks of the individual sensors since camera features
still miss accurate distance information and laser scan points
cannot be associated easily over time.

The second, more sophisticated, approach is to fuse sensor
information directly by assigning distances to image features,
which can be reidentified in consecutive images. This allows to
use the benefits of both sensor modalities. Zhang et al. [6] find
the depth for an image feature by determining the three closest
laser points and interpolating the distance of these. Graeter et
al. [7] fuse the information from LiDAR and camera in a
similar fashion. They select a set of laser scan points around
each image feature and determine its depth by fitting a plane
to the set of scan points. However, both approaches neglect
any uncertainties during this procedure. In contrast, Andert et
al. [8] only find the closest laser point for each image feature
and assign the distance of this point to the image feature. In
addition, they determine the uncertainty of the fused feature by
combining the individual uncertainties of the image feature and
the laser scan point. While this error model may be adequate
if laser scan points around the image feature have roughly the
same distance (e.g. image features on planes perpendicular to
the viewing direction), it can be overly optimistic in the case
of image features in areas containing large distance gradients
(e.g. image features on edges). Besides, inter-sensor errors are
neglected and the exact error distribution of both camera and
LiDAR must be known. However, this is usually not the case
with off-the-shelf sensors.

III. INTERVAL ANALYSIS

This short introduction to interval analysis is based on [2],
[4]. Interval analysis can be understood as the extension of
classical real arithmetic operators to set theory. However,
instead of using arbitrary sets, computations are performed on
intervals, which are defined by a lower and an upper bound,
« and T respectively. Consequently, an interval [z] = [z, 7] is
defined as the set of all real numbers between those bounds.
Such bounds are intuitively stated by us humans when talking
about, for example, a distance that we know is accurate up
to £5m. The implicit meaning is that we only know the true
value z* is guaranteed to be in the interval [z], i.e. x* € [x],
but we cannot access the true value, and thus do not know
which value in the interval is most likely. A vector of intervals
is denoted as an interval box [x]. We show an exemplary
subtraction of two intervals:

[-4,3] = [1,5] = [-4—5,3—1] =[-9,2]. (1)

All possible value combinations from both intervals are taken
into account. Thus, this way of computing can also be seen as a
worst-case consideration. Given that the specified error bounds
are correct, interval-based approaches guarantee to enclose the
true solution.

State estimation often requires to characterize the set
(e.g. the sought position of a robot)

X={xeR"|[f(x)eY}=Ff(Y), 2)

where Y C R™ (e.g. a measurement to a landmark) and f
is a possibly nonlinear function f R®” — R™ (e.g. a
measurement function describing the expected measurement
given the robot’s position). An exponential time algorithm
(since a branch and bound strategy is employed) to compute
X is the Set Inversion Via Interval Analysis (SIVIA) [4].

To avoid the exponential time requirement, the problem can
also be formulated as a CSP. f can be understood as constraints
on the variables x. Then, given an initial search space, which
can be arbitrarily large, interval computations are employed to
dismiss parts of the search space that are inconsistent with the
constraints. This is the concept of contractor programming [9].
A convenient contractor is the so-called forward-backward
contractor. The idea is to decompose complex constraints
into primitive constraints involving only a single arithmetic
operation. Due to the decomposition, the solution set can be
less accurate than the result of SIVIA but it is computed more
efficiently.

For our work, we use interval analysis since

o the true error distribution, which is generally unknown
for off-the-shelf sensors, is not required.

« unknown systematic errors (e.g. for the extrinsic calibra-
tion between sensors) can be modeled conveniently.

o the results are guaranteed under the assumption that error
bounds are not violated.

e 1o local minima occur and the possibly highly nonlinear
functions do not need to be linearized.

Many of these advantages stem from the fact that traditional
stochastic methods suffer the convergence and the inconsis-
tency problem [10], meaning that an optimization algorithm
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does not always find a global minimum and the different
sources of error (e.g. sensor and extrinsic transformation
errors) might not follow a Gaussian noise model.

However, to determine the most likely point-valued solution
in the interval, a combination with stochastic approaches is re-
quired in the future. While the main objective of conventional
approaches is to compute the solution, interval analysis can
also be understood as a technique to reliably remove inconsis-
tent areas (i.e. areas in which the solution cannot reside). Thus,
combining the proposed approach with traditional methods
allows to detect failures of these methods. In the context of
sensor fusion, this enables the identification of erroneous fused
information or, in the context of state estimation, this facilitates
the detection of wrong estimates.

IV. SENSOR ERROR MODELS

We assume bounded-error sensor models which have been
first introduced in our most recent papers [2], [11].

A. Camera Model

First, we have to decide which image points we want
to augment with depth information. Here, we use “Good
features to track” which is a state-of-the-art approach to
detect features in the image [12]. Subsequently, we use the
Lucas Kanade feature tracker to reidentify these features in
consecutive images [13]. In this way, we are able to establish
so-called image feature matches, meaning that the matched
image features of the consecutive images correspond to the
same object. Consequently, the raw measurements we use for
sensor fusion are pixel points in the image. Subsequently,
we apply the pinhole camera model to find the normalized
coordinates (i.e. the z-coordinate is 1) of these features.

However, image features cannot be detected and matched
perfectly for different reasons. First, the camera discretizes
the actual scene into pixels. Since this discretization results
in natural interval bounds (i.e.[—0.5,0.5]px), the interval-
based error model is preferable. Second, different factors
(e.g. image blur, noise or imprecise intrinsic parameters) dis-
tort the feature matching process and/or the computation of the
normalized coordinates, but cannot be quantified (i.e. the true
error distribution is unknown) since they depend on various
circumstances (e.g. the environment) [14]. Assuming to know
error bounds is a weaker assumption than assuming to know
the full error distribution, and thus the interval-based model
is again preferable. For this work, we empirically determine a
box [Ap;] (cf. Fig. 2) that bounds all error influences. In other
words, we assume that even in the worst case, the feature
matching is not off by more than [A,;]. Naturally, outliers
(i.e. features that are completely mismatched) can still occur
and will be considered later.

B. LiDAR Model

Conceptually, a 3D LiDAR measures only a radial distance
r and allows to compute the 3D Cartesian point by also
supplying the polar (vertical) angle € and the azimuthal
(horizontal) angle ¢ of the emitted beam. However, this beam
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Fig. 2. Exemplary images for which matching image features are sought. The
red dots are the anticipated result of traditional image feature matching and
do not reside on exactly the same object due to the mentioned error sources.
Thus, we use interval boxes (depicted in blue) to model the uncertainties. As
can be seen, the two interval boxes overlap for parts of the same object, and
therefore establish a correct feature matching.
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Fig. 3. The spherical coordinate intervals [r], [0] and [p] are computed
by inflating the raw measurements (r, 6, and ) by the maximum error
specified by the manufacturer (e.g. [r] := r + [A,], where [A,] encloses
the maximum error of the distance measurement). Next, we use the so-called
natural inclusion function, which is a function that replaces each real operator
by its interval counterpart [4], to compute the Cartesian 3D box [XL ] from
these spherical coordinate intervals. Due to some unknown error, the actually
measured point XL* is different from the point X% corresponding to the
point measurement, but it is enclosed by the computed 3D box.

is not a perfect beam but diverges, and thus the actually
measured point could be anywhere within the resulting beam
footprint [15]. Without knowing about the power distribution
within the beam, the error distribution of the measured point
cannot be inferred. In contrast, the beam divergence (i.e. the
bounds) is usually specified by the manufacturer, and thus
an interval-based error model is convenient. Besides, the
incidence angle of the laser beam and the environmental
conditions (e.g. humidity) influence the distance measurement
and can lead to a systematic error (bias) [3], [16]. Since
the incidence angle and environmental conditions are gen-
erally unknown, a stochastic error model is not applicable.
In contrast, manufacturers usually specify the maximum er-
ror of the distance measurement assuming usual conditions
(e.g. <50°C). Fig. 3 shows our error model.
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Fig. 4. Interval boxes enclosing the projected LiDAR points. The color of
each box corresponds to the midpoint of the depth interval: from red (close)
to blue (distant).

V. VISUAL-LIDAR SENSOR FUSION

The purpose of this section is to augment visual features
with depth information for subsequent robot localization.

A. Laser scan projection

First, camera and LiDAR information must be brought into
a common reference frame, which is the camera coordinate
system C' for this work. Thus, the extrinsic transformation
between the sensor coordinate systems, which consists of the
rotation matrix RY € SO(3) and the translation vector t¢,
must be known. Subsequently, we can define the following
function to transform a 3D laser scan point XI from the
LiDAR coordinate system L into the camera coordinate system
C and project it onto the image plane (i.e. normalize the
coordinates such that the z-coordinate is 1):

Ry-XF4ty

~C Ry -X; +t1
T\ _p (xI RO C) = | ReXi+ts
<g10) = fproj (Xi 7RL7tL) = | Roxtis, | 3)

R3-XF+ts

where R,, and t,,, m € {1,2,3} are the m-th row of RY
and tf, respectively. (z¢ §¢) T are the normalized coordinates
(i.e. the z-coordinate is 1 and thus omitted).

The laser scan point and the extrinsic transformation cannot
be determined exactly, but are only known up to some accu-
racy. Thus, we define [f],.; as the natural inclusion function
(cf. [4]) of fyrj. Consequently, we compute the box enclosing
the normalized coordinates of the scan point ¢ as

%= (]) = e (KL IRELEET) . @

30

where [XF] is the 3D box enclosing the scan point i according
to the bounded error model derived in Section IV-B. Moreover,
[RY] and [t¢] are the extrinsic parameters, which cannot be
determined exactly, but are known up to some accuracy [2].
Fig. 4 shows laser scan boxes that are projected onto the
image plane. The depth interval of a projected scan point 7 is

its z-coordinate before the projection, denoted as [2¢].

B. Data fusion

After bringing the data from both sensors into a common
reference system, we can now augment visual features, which
are detected and tracked as detailed in Section IV-A, with
depth information. Fig. 1 shows the general idea of our
approach for sensor fusion. Since image features and scan
points are no longer points but boxes we find all overlapping
scan boxes for each image feature box. Consequently, we
compute the depth of the image feature as the union over
the depth of all intersecting scan boxes. This results in an
interval for the depth which allows us to immediately assess
its accuracy.

Let j be an image feature and [X; | = ((#{] [57]) its normal-
ized coordinates on the image plane according to the bounded
error model introduced in Section IV-A. We determine the set
S; of all previously projected scan boxes 7 whose normalized
coordinates have a non-empty intersection with the normalized
coordinates of feature j:

Si={ie{l,....N}| X InX{]#2}

Subsequently, we can determine the z-coordinate (i.e. the
depth) of the image feature j by computing the union over
the depth of all overlapping scan boxes:

291= U ES) ©)

iGSj
Next, we use this interval to determine the 3D coordinates:

5]

551 - (7)
1

X§] =[]

Of course, the underlying assumption to fuse data using
our proposed method is that the LiIDAR measures points close
enough to every image feature. Otherwise, it might happen
that the true depth of a feature is not enclosed in the computed
interval. However, this is the case since the LiDAR produces
a dense point cloud and we check that each image feature is
surrounded by sufficient 3D points.

The result of this approach are visual features that are
augmented by a depth interval which is guaranteed to enclose
the true distance of the feature. This allows to directly assess
the accuracy of the depth estimates, and thus enables to
distinguish between accurate and inaccurate features. Fig. 5
shows exemplary images that illustrate the results of our
data fusion approach. Since the projected point cloud does
not cover the entire image, we cannot calculate the depth
of every feature. Nevertheless, image features without depth
information can still be employed for the motion estimation.
Thus, in the following we distinguish between features with
and without depth information.

VI. GUARANTEED VISUAL-LIDAR ODOMETRY

Next, we aim to incrementally localize a robot using the
previously fused information from camera and LiDAR. Here,
no global information (e.g. a known map or known pose
in a global coordinate system) is available. Thus, we can
only compute the relative motion of the robot between the
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(b) Colored by depth accuracy: from red (accurate) to blue (inaccurate).

Fig. 5. Exemplary results of our approach for data fusion. As expected, the
depth uncertainty is larger for features that are close to edges since the feature
could lie on either side of the edge (e.g. features on the border of the car).

acquisition of image and laser scan data. Fig. 6 shows the
general idea of our approach. To initially constrain the rotation
of the robot, we use data from an IMU. This allows to
also estimate the robot’s motion in disadvantageous feature
configurations (e.g. only features on the same plane), but is
not necessarily required for our approach. Since the use of the
IMU is not the focus of this document, we refer to [11].

Formally, we define the problem of visual-LiDAR odometry
as follows. Let f and g be two consecutive image frames. The
motion of the robot between these image frames is described
by the 6-DOF (degrees of freedom) rigid body transformation
consisting of the rotation matrix R{; and the translation vector
tg . Here, we omit the superscript indicating the coordinate
system and only specify the image frame since all information
is already transformed into C:

I _RS /
X =R;X9 +t], ®)

where X? are the 3D coordinates of the feature j found in
image h € {f,g}. These 3D coordinates are determined by
fusing information from LiDAR and camera as detailed in
Section V-B. Consequently, we can formulate the constraint

both (Bf +f xf %9\ — RIX9I 1 tf f_

£ (Rg,tg,Xj,X]) —RIXI+t/ -X/=0. (9
If we find the depth of a feature only for image g, but not for
image f, the problem of estimating the rotation matrix and

http://dx.doi.org/10.1109/LRA.2021.3057572

Fig. 6. General idea of our approach to use 3D features to compute the
relative motion of a robot.

the translation vector becomes

I<xf _nf f
7 X5 = RIXY +t], (10)

where z]f is the unknown depth and X; are the normalized
image coordinates. By rewriting (10) and eliminating the
unknown z-coordinate z]f , we can formulate the constraint:

((R1 ~ #R)XI + 1, — & t3>

9’79’

of
fone (Rf tf Xxg) - ‘ !
J J 7 (Rg — yJJCR:;)X? + t2 - yjf t3

Y

where R, and ¢,,,, m € {1,2,3} are the m-th row of Rg and
tg , respectively. Similarly, if only the depth of the feature in
image g is unknown, a similar constraint can be formulated.

If we fail to find the depth of a feature in both corresponding
images, the constraint becomes:

:07

o (R +f x5 %9 =
£ (RS, ¢, X5, X7) =

9’79’

(12)
(fngg T, BT T —#T+ gjle) R/X! = 0.

We omit the full derivation due to lack of space.

Subsequently, we stack the resulting constraints (9), (11)
and (12) of all image features j into a multi-dimensional
constraint f. Since the coordinates of all image features are
unknown but bounded, we formulate the problem of comput-
ing Rf; and tg as a CSP:

Variables: Rg,tg
C : < Constraint: f (Rf tf ) =0

979
Domains: [Rg], [tg}

To reduce the number of unknowns to six, the rotation
matrix Rg is expressed using three Euler angles 5_{; =
(¢} 07 v))T defined in the ZYX convention. The initial do-
mains [55 ] are set using measurements by the IMU. Moreover,
the initial domains for the translation are set to [tg} =

([~ 00,00] [~00,00] [0,00]) T. Thus, we assume no information
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other than that the robot is moving forward. Theoretically, the
accelerometer of the IMU could be used to compute initial
intervals for the translation. However, we refrain from doing
so since these intervals would be too inaccurate to help the
computation in any significant way.

Afterwards, we build a forward-backward contractor for
every constraint of C using the interval library IBEX [17].
These contractors allow to remove parts of the initially large
intervals [€ g ] and [t]] that are inconsistent with the constraints
in C. Finally, only small intervals remain which are guaranteed
to contain the true solution.

Keyframes: Our approach is keyframe-based which
means that we estimate the transformation from the current
image frame g relative to the most recently defined keyframe
f until we have to insert a new keyframe [18].

We use a dynamic approach that observes the uncertainty of
odometry estimates (i.e. the radius of [55 ] and [t/]) and inserts
a new keyframe once the pose uncertainty exceeds a predefined
threshold. An increasing uncertainty is the direct consequence
of insufficient constraints, which prevent our contractors from
contracting the pose intervals, and thus a direct indicator of
insufficient visual features. This allows us to insert keyframes
only when it is absolutely necessary.

Outlier Treatment: Although our approach to fuse data
from camera and LiDAR is guaranteed to compute a proper
enclosure for the depth of a visual feature, outliers can occur
during visual feature matching or due to moving objects. Thus,
we have to account for them using a relaxed intersection [4].
This means that not all constraints of the CSP C have to be
met, but a predefined number can be inconsistent. To avoid
groups of outliers that are mismatched for the same reason
(e.g. on repetitive structures like fences) and which would
make it difficult bound the number of outliers, we divide the
image into small sub-regions, in each of which we only select
a predefined number of features.

VII. EXPERIMENTS AND DISCUSSION

Our data set, which we use for the following evaluation,
is freely available [19]. It has many tall buildings along the
route that prevent GNSS information but offer many visual
features. We employed the multi-sensor platform that can be
seen in Fig. 7. Among other sensors, this platform houses a
LORD MicroStrain 3DM-GQ4-45 IMU, a Velodyne HDL-64E
LiDAR and a FLIR Grasshopper3 color camera. To measure
accurate ground truth information, the vehicle is additionally
equipped with a Riegl VMX-250 Mobile Mapping System that
incorporates a highly accurate GNSS/IMU system. The camera
is set to capture images whenever the LiDAR faces forward,
resulting in a frame rate of 10 frames per second. More details
can be found on our website [19].

The uncertainties of the LiDAR are specified by the
manufacturer as [A,] = [-6,6]cm and [Ag] = [A,] =
[-1.5,1.5] mrad. The empirically determined error bounds
for the image feature matches are composed of a fixed
uncertainty [A,; ] = [~2,2]px and an uncertainty [A,; | =
[—0.1,0.1] px that scales with the distance the vehicle moved
between image acquisitions. In addition, we choose a max-
imum of 5% outliers for the relaxed intersection explained
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Fig. 7. Our multi-sensor platform. Image credit: Soren Vogel.

in Section V. We determined this percentage empirically (by
evaluating the number of matches that are inconsistent with the
ground truth trajectory of different test drives) and selected it
rather conservatively to keep the guarantees intact. Besides,
we insert a new keyframe once the area of the 3D position
box projected to the ground plane exceeds 5m?.

Since our approach only serves the purpose of computing
the robot’s pose relative to the last keyframe, we only evaluate
this relative, but no global localization results. This means that
the uncertainty that has accumulated when inserting a new
keyframe is not further propagated but reset. If we would try
to localize the robot relative to the start of the experiment, the
uncertainty would grow infinitely due to drift. This is because
we have no global information to reduce the localization error
that has accumulated once we have to set a new keyframe,
but only use information from two distinct points in time.
Thus, global contractors should be developed in the future to
prevent the uncertainty from increasing rapidly. These global
contractors can be found, for example, by extending our
approach by bundle adjustment, extending it to SLAM, or by
using GNSS information.

We show the advantages that combining our approach with
the optimization method proposed by Zhang et al. [6] can
bring. For this, we only implement their frame to frame
motion estimation since our approach does not perform bundle
adjustment. Besides, we provide both our and their approach
with the same image features and point clouds.

We first show quantitative results for both our and the KITTI
data set [20] in Table I. From the KITTI data set, we use
different sequences, which are indicated in the first row of
the table as four-digit numbers (all from 2011/09/26). Since
the same sensors are used but only few information about
the errors are provided by the authors, we use the same error
bounds as for our data set. Note that we cannot provide the
standard evaluation metrics such as the mean error or standard
deviation. Our interval-based approach computes the 6-DOF
pose boxes [Eg] and [tg] that are guaranteed to contain the
true solution without being able to judge which point-valued
pose is the most likely solution (cf. Section III).

As can be seen, we are able to reliably enclose the robot’s
true pose for all 2644 image frames of our own data set, and
are thus able to provide the desired guarantees. Although the
numbers do not indicate that these guarantees can also be
provided for the KITTI data set, we are convinced that the few
faults (25 out of 1155 frames) are either due to the missing
information about the sensor and extrinsic calibration errors
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TABLE I
QUANTITATIVE RESULTS OF OUR APPROACH.

Metric [19] 0009 [20] 0023 [20] 0106 [20]
Percentage of image frames for which the true pose is enclosed in the computed 6-DOF pose boxes 100 % 97.8 %* 97.7%* 98.3 %"
Average volume of the 3D position boxes 0.77m®  1.52m3 0.91m3 0.94m3
Average area of the 3D boxes on the ground 1.30m? 1.81m? 1.39m? 1.32m?
Average radius of the interval enclosing the robot’s orientation on the ground plane 0.39° 0.21° 0.19° 0.22°
Average number of image features with depth 105 201 173 170
Average distance after which we insert a new keyframe due to the uncertainty becoming too large 11.35m 9.57m 11.91m 11.48 m
Percentage of image frames for which the result of [6] is not enclosed in the 6-DOF pose boxes 29.9 % 16.1% 18.2% 12.2%

or due to incorrect ground truth poses. This is also evident by
the fact that many faults occur in direct succession, which can
be attributed to brief GNSS outages.

Moreover, the accuracy of our approach is reasonable,
considering that we take the maximum error into account and
allow up to 5% outliers. Besides, we are able to detect an
inconsistency of the state-of-the-art approach for up to three
out of ten image frames, showing that our approach is more
robust. While the approach of Zhang et al. is real-time capable
and takes approximately 40 ms per image frame, our approach
has not yet been optimized and needs on average 0.9s per
image frame. This is not due to the design of our approach (we
use efficient contractors [9]) but due to the implementation,
which should be optimized in the future.

Fig. 8 shows results with respect to ground truth information
for our own data set [19]. Since the car moves mainly in two
dimensions, we only show results for the translation in x- and
z-direction and the rotation around the y-axis. It is evident that
our error bounds never violate the true result (i.e. 0 is always
enclosed in those intervals). Furthermore, the midpoint of our
intervals approximates the true result reasonably well, and thus
it can be used if a point-valued result is needed. Next, we
want to point out that the uncertainty of the localization results
varies drastically. Consequently, keyframes are inserted more
frequently for some parts of the trajectory. This is due to the
fact that different areas of the trajectory provide 3D features
of different numbers and different uncertainties. A similar
behavior is difficult to achieve using established stochastic
approaches if the uncertainties of the features are neglected,
and thus the accuracy of the pose estimates cannot be assessed.

In addition, Fig. 8 illustrates the inconsistencies between
the results of the stochastic and our interval-based approach.
Whenever the result of the stochastic approach lies outside the
lower and upper interval bounds (i.e. the violet line crosses
a blue line), the stochastic solution cannot be correct and
therefore an inconsistency has occurred. We believe that these
inconsistencies occur since the stochastic approach disregards
any uncertainty the augmented features might have. Thus, bet-
ter features cannot be assigned a higher weight, and therefore
many bad features overrule the few good features. In contrast,
our interval-based approach considers the uncertainties during

*The computed pose boxes do not enclose the ground truth for some frames
for which we deem the ground truth information unreliable. We inspected
all such cases manually and found that the computed boxes are reasonable
whereas the ground truth pose seems off (e.g. due to GNSS outages).
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Fig. 8. Relative error (ground truth is 0) over time for [19]. The x-axis
is pointing to the right, the y-axis is pointing downwards and the z-axis is
pointing in driving direction. A vertical gray line indicates the insertion of
a new keyframe. Thus, pose estimates are always relative to the last vertical
line. The lower and upper bounds of our method are depicted in blue, the
corresponding midpoints are colored yellow and the result of the stochastic
method is colored violet.

sensor fusion. Features for which depth cannot be determined
accurately (e.g. on borders) are assigned large depth intervals
and vice versa. Consequently, uncertain features contribute
significantly weaker constraints to the pose computation than
accurate features.

Fig. 9 shows augmented feature images for both our and the
stochastic approach during one exemplary detected inconsis-
tency. First, it can be seen that our approach uses some features
without depth, for which the stochastic approach finds depth.
This is because our approach is able to dynamically check
if the image feature interval is completely covered by scan
point intervals and does not assign depth information if this
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(a) Stochastic features colored by depth: red (close) (b) Interval features colored by middle depth: red (c) Interval features colored by depth uncertainty:

to blue (distant); pink: no depth.

(close) to blue (distant); pink: no depth.

red (accurate) to blue (inaccurate).

Fig. 9. Depth augmented image features for the detected inconsistency around ¢t = 200s.

is not the case. In contrast, the conventional approach only
requires three scan points to be close enough to the image
feature. Except for these few features, it can be seen that the
depth estimates by the stochastic approach (cf. Fig. 9a) look
similar to the mid points of our depth intervals (cf. Fig. 9b).
However, Fig. 9c indicates that only a few features are accurate
and should be trusted.

Although stochastic approaches successfully apply various
methods to cope with erroneous pose estimates (e.g. Zhang
et al. employ bundle adjustment to smooth the computed
trajectory), we still believe that detecting these faults in a
guaranteed way allows to be more robust.

VIII. CONCLUSIONS AND FUTURE WORK

We present an interval-based approach to fuse data from
camera and LiDAR in a guaranteed way. Here, the goal is to
create visual features that are augmented by distances mea-
sured by the LiDAR. In contrast to conventional approaches,
we propagate sensor and transformation uncertainties from
input sources to the final 3D features. This allows us to
perform visual-LiDAR odometry which takes the uncertainty
of features into account and propagates it to the final pose
interval. Since we use a bounded-error method, our fused 3D
features and pose estimates are guaranteed under the given
assumptions. The evaluation shows that we are indeed able to
reliably enclose the true localization results. Besides, we are
able to detect inconsistencies of an established approach for
depth-aided visual odometry that does not take the uncertainty
during sensor fusion into account.

As future work, we aim to find reliable point-valued results
by restricting the stochastic approach to a solution inside our
guaranteed intervals. Besides, we plan to extend our motion
estimation by incorporating global constraints such as GNSS
information or by simultaneously building a map (e.g. based
on LiDAR points similar to [21]) that allows us to find
additional constraints (i.e. extension to SLAM).
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