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System Using Sensor Observations*
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Abstract 
Multi-sensor systems are widely used for robotics applica-
tions. While additional sensors can increase the accuracy 
and robustness of the solution, it is inevitable to synchronize 
them in order to rely on the results. For our multi-sensor 
system consisting of an actuated laser scanner, its motor and 
a camera, we assume that the timestamps are only delayed by 
a constant offset. We propose two different approaches to cal-
culate timestamp offsets from laser scanner to motor, one of 
which is additionally capable of determining the timestamp 
offset between laser scanner and camera. Both approaches 
use parts of a SLAM algorithm but apply different criteria to 
find an appropriate solution. Our experiments show that we 
are able to determine timestamp offsets with a reasonable 
accuracy. Furthermore, our experiments exhibit the signifi-
cance of a proper synchronization for a multi-sensor system.

Introduction
For many applications a sensor system consisting of a laser 
scanner and camera is used to solve the SLAM problem (Droe-
schel et al., 2014; J. Zhang and Singh, 2015). While in the past 
2D laser scanners were sufficient for the navigation of mobile 
robots in planar environments, recent SLAM approaches deal 
with 3D data to avoid obstacles at all heights and simultane-
ously acquire a dense 3D point cloud of the environment 
(Nuechter et al., 2007; Bosse and Zlot, 2009; Bosse, Zlot, and 
Flick, 2012; J. Zhang and Singh, 2014). However, 3D laser 
scanners that provide high resolution and long ranges are ex-
pensive. Therefore, cheaper 2D laser scanners that are usually 
only capable of acquiring scan points in a plane are actuated 
by a servo-drive to gather 3D data (Wulf and Wagner, 2003).

To transform the measurement points into three-dimen-
sional space, it is required to know the appropriate encoder 
values of the servo drive for every set of scan points. Because 
of that, there exist two different approaches to determine 
these encoder values. The first and most simple possibility 
is using a motor that stops at discrete steps to let the laser 
scanner capture measurement points (Mandow et al., 2010). 
This solution, however, leads to a lower data rate since the 
laser scanner and the motor have to wait for each other before 
performing a measurement or a rotation. Another possibil-
ity is to continuously monitor and control the motion of the 
motor while acquiring measurement points with a high scan 
frequency (Wulf and Wagner, 2003; Yoshida et al., 2010). 
However, this can lead to a constant offset between the time-
stamps of the laser scanner and the motor due to the latency 
and transmission lags of sensors and computers. Therefore, 
it is essential to achieve a proper synchronization between 

the timestamps of the laser scanner and its rotating motor as 
it is already mentioned by Hebert and Krotkov (1992). If no 
synchronization is present, the offset for the corresponding 
encoder values for each set of scan points can lead to a large 
distortion in the resulting point cloud that is constructed by 
a SLAM (Simultaneous Localization And Mapping) approach 
(Wulf and Wagner, 2003).

Furthermore, if the images taken by a camera are fused 
with the measurements of the laser scanner, a proper syn-
chronization between these two sensors is indispensable as 
well. Otherwise, the point clouds and images that may have 
been assigned with the same timestamp do not correspond to 
the same actual moment of time, and thus cannot be fused to 
generate a consistent representation of the environment. 

Thus, our aim is to correct distortion in point clouds ac-
quired by fusing the measurements of a rotating laser scanner 
and a camera that arises due to erroneous timestamp offsets 
between the three devices, i.e., namely the actuated laser 
scanner, its corresponding motor, and the camera. For this 
purpose, we assume that the timestamp offsets are constant 
throughout our measurement periods.

We present two different approaches to determine the 
timestamp offsets. The first, stationary approach can be used 
to synchronize the laser scanner and motor before using it 
for an online algorithm that requires correctly transformed 
3D data. For this, it is necessary to not move the system for a 
short period of time and wait for the calibration to finish. The 
second, motion-based approach makes it possible to deter-
mine the offset between laser scanner, motor, and camera after 
the acquisition of a large dataset. Thereby, it becomes possible 
to use the dataset for offline computations although the initial 
synchronization of the multi-sensor system is not optimal. To 
verify the synchronization results between laser scanner and 
motor, we compare the offsets computed by both approaches.

Related work in the field of synchronizing actuated laser 
scanners is presented by Morales et al. (2011). Within this 
work the authors describe the design and development of a 
mechanical system that is used to rotate the laser scanner. 
Furthermore, a motion controller that is responsible for the 
synchronization between the mechanical system and the 
laser scanner is presented. The distinction is that our method 
solely focuses on the time synchronization, and thus can be 
applied to arbitrary motor and laser scanner combinations.

Similar to our approach, Sheehan et al. (2010) attempt to 
design a 3D laser scanner that is capable of automatic self-
calibration. Their system consists of an arbitrary number of 
2D laser scanners that are mounted on a rotating plate. In 
addition to other extrinsic parameters they also deal with the 
estimation of the clock skews between their devices. For this, 

Leibniz University of Hannover - Institute of Systems 
Engineering - The Real Time Systems Group  
(voges@rts.uni-hannover.de).

*This paper is an extended version of work published in 
(Voges et al., 2017). We extend our previous work by incorp-
orating a camera as an additional sensor whose timestamp 
offset to the laser scanner needs to be determined.

Photogrammetric Engineering & Remote Sensing
Vol. 84, No.6, June 2018, pp. 357–366.

0099-1112/18/357–366
© 2018 American Society for Photogrammetry

and Remote Sensing
doi: 10.14358/PERS.84.6.357

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING J une  2018  357

06-18 June PR.indd   357 5/17/2018   5:19:10 PM



Delivered by Ingenta
IP: 5.10.31.210 On: Fri, 20 Sep 2019 13:55:58

Copyright: American Society for Photogrammetry and Remote Sensing

they initially try to learn the offsets between the clocks of 
all devices. Afterwards, they use a second method to deter-
mine the transport delays. For this purpose they evaluate the 
“crispness” of resulting point clouds using different criteria 
than us. A further distinction is that our approach focuses on 
one laser scanner only, and thus it is not required to employ 
two separate algorithms to detect the offset.

Rehder et al. (2016) present a general approach to achieve 
a spatiotemporal calibration in multi-sensor systems. Their 
method employs a continuous-time batch estimation that does 
not rely on certain properties of specific sensors. Thereby, 
they are able to estimate the temporal offset between various 
sensor combinations. The authors show the usefulness of 
their approach by determining the timestamp offset between 
camera, IMU, and laser scanner. Similar to our approach, they 
assume that the clocks of the sensors are delayed by constant 
timestamp offsets that arise due to effects such as transmis-
sion delays or signal integration. However, they propose a 
fundamentally different method which uses different criteria 
and is computationally expensive. Furthermore, their ap-
proach cannot be used to estimate temporal offsets between 
an actuated laser scanner and its corresponding motor.

The remainder of this paper is organized as follows. First, 
the sensor system we used to evaluate the methods presented 
within this paper is introduced followed by our approach 
to calculate the timestamp offset between the laser scanner, 
motor, and camera. Since we developed two independent 
methods, this section is divided into two subsections: one for 
the stationary approach that calculates the offset prior to data 
acquisition and one for the approach that deals with large 
datasets. Experiments demonstrating both methods are then 
presented for a number of datasets of different characteristics. 
Subsequently, we analyze and discuss the results of our ex-
periments, and finally, give a conclusion and future work.

System Overview
The idea of this paper is validated on a sensor system con-
sisting of a Hokuyo UTM-30LX laser scanner that is actu-
ated by a Dynamixel MX-64R motor, and a Microsoft Kinect 
v2. The laser scanner can provide a 2D scan with a field of 
view of 270° and an angular resolution of 0.25°. However, for 
our experiments the field of view is limited to 180° to avoid 
detection of the frame the laser scanner is attached to. Every 
measurement of the laser scanner takes 25 ms which leads to 
a scan frequency of 40 lines/sec. Furthermore, the laser scan-
ner has a maximum detection range of 30 m and a minimum 
detection range of 0.1 m.

The Dynamixel MX-64R robot actuator is able to operate at 
an angle of 360° or at a continuous turn. Besides, the motor 
supports the measurement of its own position and speed. For 
this, it provides an angular resolution of 0.088°. To control the 
motion of the actuator we use the Dynamixel motor package 
that is available for the Robot Operating System (ROS).

The Microsoft Kinect v2 depth-sensing camera provides 
RGB (1920 × 1080 pixels, 30 fps), depth (512 × 424 pixels, 30 
fps) and active IR images (512 × 424 pixels, 30 fps). Our cam-
era’s focal length is roughly 267 pixels, and it covers a field of 
view of 70° × 60°. 

Unfortunately, Microsoft has not released information 
about the dimension of the RGB camera sensor. For this work 
we only use the RGB stream with a resolution of 480 × 270 
pixels and 10 fps. The typical distance to objects that we use 
as features for our visual odometry is 2 to 20 meters. 

We determine the camera’s intrinsic parameters using 
the algorithm proposed by Z. Zhang (2000) and its imple-
mentation in the Open Source Computer Vision Library 
(OpenCV). We consider two parameters for the focal length, two 

parameters for the principal point and three parameters for 
the radial distortion. We do not determine the tangential dis-
tortion parameters since they show no effect for the Microsoft 
Kinect v2.

The laser scanner and the motor are connected to a Kon-
tron KTQM87 based embedded PC which runs the motion 
controller for the actuator. Moreover, the embedded PC col-
lects the measurement data from the laser scanner as well as 
the position data from the motor and assigns timestamps to 
them. Due to latency and transmission lags of sensors and the 
embedded PC, these timestamps may be delayed by a constant 
offset that needs to be determined.

It is important to note that the devices are attached to dif-
ferent ports of the embedded PC. While the motor is connect-
ed to the USB port using a USB to RS485 converter, the laser 
scanner is attached to the LAN port. Thus, our assumption 
about a constant offset remains valid since both devices do 
not interfere with the measurement data acquisition of each 
other due to the utilization of different ports. Additionally, 
our embedded PC does not operate at full computational load 
which further ensures a constant timestamp offset.

The Microsoft Kinect v2 is connected to Nvidia’s Tegra-
based Jetson TK1 embedded board to the USB. To synchronize 
the clocks of the Kontron PC and the Tegra board, we use the 
Network Time Protocol (NTP) (Mills, 1991). However, an offset 
between the laser scanner’s and the camera’s timestamps still 
remains, since there are transmission delays from each sensor 
to the system it is attached to. Furthermore, we do not expect 
NTP to work perfectly which introduces another source for 
possible timestamp offsets.

Our multi-sensor system can be seen in Figure 1. For our 
experiments we focused on the rolling scan method for which 
the laser scanner is rotated around its center. This gives the 
advantage of only one focus point in front of the laser scanner 
(Wulf and Wagner, 2003).

Figure 1. Our multi-sensor system consists of a Microsoft 
Kinect v2 and a Hokuyo UTM-30LX scanning laser range-
finder that is rotated by a Dynamixel MX-64R robot actuator.

The motor is set to control the laser scanner such that a 
sweep lasts 0.5 s, where a sweep is the rotation from −90° to 
+90° or in the inverse direction with the horizontal orienta-
tion as 0°. This yields a rotation frequency of 1 Hz since a 
sweep is half a full rotation. The frequency at which a com-
plete 3D scan is acquired amounts to 2 Hz.
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Estimating Timestamp Offsets Between  
Laser Scanner, Motor, and Camera
Within this section we will present two different approaches 
to compute the offsets between the timestamps of a laser scan-
ner and its corresponding motor. The stationary approach can 
be used to determine the offset for a system that needs to be 
adequately synchronized for following online computations. 
The motion-based approach calculates the offset for a large 
dataset. This enables offline computations for the dataset al-
though the offset between the timestamps of the laser scanner 
and motor was not known during data acquisition. Addition-
ally, the motion-based approach can be used to determine the 
timestamp offset between a laser scanner and a camera that 
are fused for a SLAM algorithm. Before we start explaining our 
methods we give an overview of the SLAM approach that is 
proposed by J. Zhang and Singh (2015).

Overview of the Utilized SLAM Approach
For our methods we use the SLAM approach that is proposed 
by J. Zhang and Singh (2015). It is divided into two parts: 
visual odometry (J. Zhang, Kaess, et al., 2014) and lidar odom-
etry (J. Zhang and Singh, 2014). At first, the visual odometry 
calculates a motion estimation that is then further refined by 
the lidar odometry part.

Visual Odometry
The visual odometry method (J. Zhang, Kaess, et al., 2014) 
uses visual features extracted from grayscale images to esti-
mate the motion between consecutive frames. Since depth 
information is required to solve the odometry problem, the 
algorithm maintains a depth map consisting of point clouds 
that are measured using the laser scanner and transformed us-
ing the previously estimated motion. This depth map is pro-
jected onto the last image frame such that it is possible to find 
the depth of 2D visual features by interpolating between the 
three closest points from the depth map. If it is not possible 
to assign depth values to visual features using this method, 
the depth can be triangulated using the previously estimated 
motion or the feature will be used without depth.

To estimate the six-DOF (degree of freedom) parameters, 
the motion is modeled as rigid body transformation. The 
equations are set up such that the six-DOF parameters ap-
plied to the coordinates of a visual feature of the previous 
frame should yield the same coordinates as the corresponding 
visual feature of the consecutive frame. Using this procedure, 
features with depth provide two equations while features 
without depth provide one equation. Now, all equations are 
stacked to a nonlinear system that is solved using a nonlinear 
optimization algorithm.

We use ORB (Oriented FAST and Rotated BRIEF) (Rublee 
et al., 2011) to extract and match the visual features between 
consecutive frames. An example of features that were extract-
ed in a lecture room can be seen in Figure 2. Furthermore, we 
refrain from triangulating the depth for visual features since 
we only need the visual odometry as an initial guess for the 
lidar odometry. This reduces the computational cost.

Lidar Odometry
The lidar odometry method (J. Zhang and Singh, 2014) consists 
of two algorithms that run separately. The first algorithm 
(sweep to sweep refinement) takes the motion estimation calcu-
lated by the visual odometry as an initial guess that is suscep-
tible to drift. We get motion estimates with a frequency of 10 Hz 
from our visual odometry algorithm and apply them to project 
our scan points do the beginning of the sweep. The remaining 
drift that cannot be determined using the visual odometry, is 
considered as slow motion during a sweep;where a sweep is 
the rotation from −90° to + 90° or in the inverse direction with 
the horizontal orientation as 0°; and thus, can be modeled with 
constant velocity. Now, the aim is to determine this drift and 

use it to correct distortion in the point clouds that arises due to 
the motion of the laser scanner during a sweep.

To extract scan features, the curvature of every 2D scan 
point with respect to its neighbors is calculated as:
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where Xi are the 2D-coordinates of a scan point i, N is the 
number of 2D scan points that are considered for the curva-
ture calculation to both sides of i in the ordered 2D scan and 
||Xi|| is the euclidean norm for Xi. Because of the scanner’s 
resolution, two successive scan points are 0.25° apart. For 
our experiments we set N = 5, which showed to be robust 
amongst different datasets.

The 2D scan points are distributed into four subregions 
and sorted based on the curvature values. From every subre-
gion the two points with the largest curvature that also exceed 
a threshold are chosen as edge points and the four points with 
the smallest curvature that also do not exceed a threshold are 
chosen as planar points. We chose a threshold of 0.8 for edge 
points and 0.45 for planar points, which showed to be robust 
amongst all datasets as well. An example for the feature ex-
traction can be seen in Figure 3.

Figure 2. Image of a lecture room with ORB features marked 
as dots. Features whose depth was found are marked in green 
while red dots correspond to features with unknown depth.

Figure 3. An example of 2D laser scan points for which the 
curvature is calculated. Dark orange points correspond to 
scan points with large curvature values while light orange 
points indicate a small curvature value. Circled points are 
extracted as edge points. Since too many planar points were 
extracted they are not depicted in this figure.
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Afterwards, the sweep to sweep refinement determines the 
motion of the laser scanner by matching extracted edge points 
to edges and planar points to planar patches from the previ-
ous sweep. Subsequently, an optimization algorithm is used 
to minimize the distance between the correspondences.

The second algorithm (sweep to map registration) is 
responsible for matching the edge points and planar points 
from the last sweep onto the global map. Thereby, the second 
algorithm is able to correct for drift over time. An example for 
a map can be seen in Figure 4.

Figure 4. An example of a map that is used within the 
sweep to map registration. Dark orange points were 
extracted as edge points while light orange points were 
extracted as planar points.

To register an edge point from the most recent sweep onto 
the map, the algorithm finds edge points within a certain 
region around the newly extracted edge point in the map and 
fits an edge through them. In a similar way, the correspond-
ing planar patch for a planar point is determined. Afterwards, 
both feature types are combined in an optimization algorithm 
to minimize the distance from edge points to corresponding 
edges and from planar points to corresponding planar patches.

For the lidar odometry algorithm to work, it is essential 
to detect enough edges and planar patches. However, if these 
feature points are missing for a short period of time only, the 
visual odometry motion estimation that is used as an input for 
the lidar odometry algorithm is capable of compensating the 
absent laser feature points. Similarly, if no visual features are 
available to estimate the motion in the visual odometry algo-
rithm, the lidar odometry algorithm can still work. However, 
if the visual odometry fails while performing rapid move-
ments (especially rotations) the lidar odometry algorithm will 
not be able to recover. Although visual and laser scan features 
were missing for short periods of time for all our datasets, the 
motion estimation algorithm was able to perform well. To ob-
tain a reasonable motion estimation (and therefore a reliable 
timestamp offset) we advise to obtain data in environments 
which allow the laser scanner to observe at least two perpen-
dicular edges and one planar patch at all times. Addition-
ally, it is important for the visual odometry algorithm to find 
features that are distributed across the entire image.

Stationary Approach Prior to Data Acquisition for Online Computations
To compute the offset between the timestamps of the laser 
scanner and the motor, the system is set up as follows. The 
motor is set to rotate the laser scanner at a constant angular 
velocity around the center of the scanner. Subsequently, the 
devices are brought into a fixed position and required to 
remain in place until a short dataset is recorded.

The idea is to determine the offset that leads to the small-
est movement calculated by a SLAM approach that incorpo-
rates the desired time offset between the timestamps of the 
laser scanner and the motor. Since the system remains station-
ary for the computation, the movement calculated by a SLAM 
approach should be zero. However, due to transformation 
errors caused by a false timestamp offset the 3D data points 
do not match perfectly from one sweep to another and lead 
to erroneously computed movements by the SLAM algorithm. 
This is because consecutive sweeps are acquired in oppo-
site directions. We use parts of the lidar odometry algorithm 
proposed by J. Zhang and Singh (2014) that was introduced in 
the previous subsection.

Since our system will not move within the map, we ex-
clusively use the sweep to sweep refinement which has the 
important characteristic that it matches consecutive sweeps 
acquired in opposite directions (for one sweep the laser scan-
ner is rotated from –90° to 90° and for the following sweep 
the scanner is rotated from 90° to –90° or vice versa). As a 
result, an offset between the timestamps of the laser scan-
ner and the motor leads to an offset in the consecutive point 
clouds which in turn induces a nonzero motion calculated by 
the sweep to sweep refinement.

To determine the motion calculated by the sweep to sweep 
refinement, it is necessary to first compute the translational 
and rotational movement separately. The translation can be 
computed as:

 
t t t tx y z= + +2 2 2

where tx, ty and tz are translations along the x-, y- and z- axes. 
Similarly, the magnitude of the rotation can be computed as:

 = +2 2θ θ θ θ+x y z
2

where (θx, θy, θz)T is a vector representing the rotation axis 
while simultaneously matching the magnitude of the rotation 
by its length. Both the translational and rotational movement 
can be combined in the following equation:

 d t c= + ⋅2 2θ

where c≥0 is a weighting factor. For our experiments we set 
c=1. Now, we determine di for every sweep i during our short 

dataset and aim to minimize the average motion
 

1
1k
di

i

k

=∑
 

that is calculated by the sweep to sweep refinement over all k 
sweeps.

To determine the timestamp offset for a large dataset that 
is already recorded, we again use the SLAM approach that is 
proposed by J. Zhang and Singh (2015). As opposed to the 
previous subsection, the system is now allowed to move 
which makes it impossible to use the same strategy as before. 
Instead, we use both the visual odometry method and the li-
dar odometry method and try to find the timestamp offset that 
induces the greatest clarity in the resulting point cloud of the 
environment. For this purpose, it is crucial to define adequate 
criteria that are viable to evaluate the clarity of a point cloud. 
Using these criteria, it is then possible to determine both the 
timestamp offset from laser scanner to motor and from laser 
scanner to camera.

Motion-based approach after data acquisition for offline computations
The loop closure error cannot be used as a criterion since it 
can be small although the SLAM algorithm performed poorly 
between start and end pose. That is because the algorithm 
may be able to close the loop by matching feature points 
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detected at the end pose to feature points from the map that 
were added at the start pose. Nevertheless, the computed 
trajectory between start and end pose may still deviate from 
reality. On this account, we refrain from specifying the loop 
closure error for our algorithm since it can be misleading.

The first suitable criterion is the amount of matches n that 
are registered onto the map in the sweep to map registration. 
This is a meaningful criterion since more matches indicate 
that more features could be integrated into the map and thus 
the clarity is greater. However, if the amount of matches is 
low, it follows that the extracted features were not close to 
their corresponding edge lines or planar patches, which sug-
gests that the clarity of the resulting point cloud is low. Thus, 
the aim is to maximize this criterion.

Before we can compute n, we need to define the sets Dk
 and 

Dk
H that contain all matched edge points and planar points for 

sweep k as:

 Dk
 :={i∈k+1|d(i,j,l)<δ; j,l∈Qk}

where k+1 is the set of edge points that were extracted for 
sweep k+1, Qk is the set of all points that were integrated into 
the global map until sweep k, d(i,j,l) is the distance between 
an edge point i and its corresponding edge line that is repre-
sented by two points j,l in the global map l∈Qk (cf. equation 
(2) by J. Zhang and Singh (2014)) and δ is the maximum dis-
tance between an edge point and its corresponding edge line 
to consider them as a match. Dk

H is defined as:

 Dk
H:={i∈Hk+1|dH(i,j,l,m)<δH; j,l,m ∈Qk}

where Hk+1 is the set of planar points that were extracted for 
sweep k+1, dH(i,j,l,m) is the distance between an planar point 
i and its corresponding planar patch that is represented by 
three points (j,l,m) in the global map m∈Qk (cf. equation (3) 
by J. Zhang and Singh (2014)) and δH is the maximum dis-
tance between an planar point and its corresponding planar 
patch to consider them as a match. Using both sets we can 
derive an equation for the total number of matches n as:

 

n D D
k S

k k= +( )
∈

∑ E H ,

where S is the set of all sweeps that were acquired during the 
measurement and |A| is the cardinality of the set A.

The second criterion is the average error e for each match 
that is registered onto the map. The lower the error the closer 
the matches are to their corresponding edge lines or planar 
patches which in turn suggests a greater clarity. Thus, the 
aim is to minimize this criterion. The average error e can be 
computed as:

 
e

d i j l d i j l m

n
k S i D i Dk k

=
( ) +



∈ ∈ ∈∑ ∑ ∑

E H
E H, , ( , , , )

where d(i,j,l) and dH(i,j,l,m) are the distances between feature 
correspondences as depicted in the equations.

Now, with these two criteria it is possible to determine 
appropriate timestamp offsets from laser scanner to motor and 
from laser scanner to camera. The reasoning for this is that a 
more fitting offset induces a point cloud that shows a greater 
clarity. This follows from the fact that scan features trans-
formed with the correct encoder values can be matched more 
straightforward than those that are not correctly transformed. 
Similarly, if the initial motion estimation from the visual 
odometry algorithm is correct, the lidar odometry is able to 

find more matches. In contrast, if the timestamp offsets do not 
fit, features from consecutive sweeps do not align and thus 
cannot be integrated into the global map.

To further confirm the relevance of our criteria, we car-
ried out an additional subjective test. For this, we compared 
the two criteria to the authors’ perceived clarity of the point 
clouds that resulted from running the SLAM approach using 
different timestamp offsets. To enable the reader to judge the 
clarity of different point clouds as well, we show the results 
of our experiments in the following section.

Finding the Appropriate Timestamp Offsets
To find an appropriate offset, we use a brute-force approach 
that takes an initial offset, a required accuracy for the final 
offset and a maximum number of steps. Thus, it is necessary 
to manually guess an initial range that encloses the optimal 
offset. This range can be arbitrarily large for the laser scanner 
to camera synchronization. However, for the laser scanner to 
motor synchronization it must not exceed the duration of one 
motor rotation to avoid multiple minimums that may arise 
from the cyclic properties of the problem. The algorithm then 
iterates over possible offsets starting from the initial offset 
and taking steps in both directions in the size of the required 
accuracy. For every offset, the required parts of the SLAM 
approach are executed and its criteria (magnitude of motion 
or total number of matches and average error per match) are 
determined as depicted in the previous subsections. Finally, 
the offset for which the appropriate criteria approached their 
optimum is returned.

Experiments
In this section we present the results of our experiments using 
the system outlined in a previous section. At first, we display 
the results of our stationary method discussed above. After-
wards, the datasets are introduced before finally presenting 
the results of our motion-based approach.

Stationary Approach Prior to Data Acquisition
Before recording large datasets, we acquired six datasets of 
roughly four seconds each. For these datasets the system was 
kept in a fixed position to avoid motion during the measure-
ment. In order to minimize error influences due to measure-
ment noise and observed scenes, we chose to use six different 
positions in the same room. The offset between the time-
stamps of the laser scanner and the motor is determined using 
the previously described method. Initially, we ran the algo-
rithm with a desired accuracy of 1 ms in the range from 19 ms 
to 29 ms to determine a first approximation of the solution. 
We worked with this initial range since our algorithm did 
not succeeded with offsets outside this range. These experi-
ments revealed that the final solution lies within the range of 
22 ms to 26 ms which prompted us to carry out an additional 
experiment with an accuracy of 0.1 ms within this range. Fur-
ther tests were not required since the final experiment with 
an accuracy of 0.1 ms yielded results that did not improve by 
a large margin from one step to another.

The results for all six experiments can be seen in Table 1. It 
can be seen that all calculated timestamp offsets vary around 
24 ms while the magnitude of motion  ranges from 0.0037 to 
0.0314. This can be explained by measurement noise that in-
fluences the laser scanner. However, the calculated timestamp 
offsets still coincide which shows that the approach is prone 
to some measurement noise. The average offset over all six 
datasets amounts to 24.0 ms.

Additionally, in Figure 5a and 5b the resulting graphs for 
experiment number one and four, respectively, are depicted. 
These are exemplary for all six experiments. It can be seen that 
the magnitude of motion  increases sharply if the observed 
timestamp offset differs a few milliseconds from the optimum.
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Datasets
For our experiments we acquired four datasets of different 
characteristics. Before we introduce and discuss the results 
that our motion-based approach yields, we want to present 
those datasets to give the reader an impression. To create a 
representation of the datasets, we used the previously dis-
cussed SLAM approach that is presented by J. Zhang and Singh 
(2015). Note that no georeferencing was used and we carried 
the sensor setup along for all data recordings.

The first dataset contains data that was recorded in an 
abandoned metro station. In a period of roughly 159 s we 
cover a distance of around 117 m with a maximum velocity of 
1.3 m/s and a maximum angular rate of 0.44 rad/s. Moreover, 
we finish the measurement in the same spot that we started it 
in. The final map can be seen in Figure 6a.

For the second dataset we moved across a parking area. In 
a period of roughly 208 s we cover a distance of around 155 m 
with a maximum velocity of 1.5 m/s and a maximum angular 
rate of 0.61 rad/s. Again, we finish in the same spot that we 
started in. In Figure 6b the corresponding map can be seen. 

The third dataset was recorded on a cemetery. In a period 
of roughly 287 s we cover a distance of around 236 m with 
a maximum velocity of 1.4 m/s and a maximum angular rate 
of 0.74 rad/s. Once more, we finish in the same spot that we 
started in. The final map can be seen in Figure 6c.

For the fourth dataset we choose an environment of several 
different characteristics. We started our measurement in 
an empty lecture room and finished it in an outside area in 
which trees and building facades were present. In a period 
of roughly 274 s we cover a distance of around 184 m with a 
maximum velocity of 1.9 m/s and a maximum angular rate of 
0.91  rad/s. This time we do not finish in the same spot that 
we started in. Figure 6d depicts the final map for this dataset.

Motion-Based Approach After Data Acquisition
As explained in the previous section, our motion-based 
approach allows us to estimate both the timestamp offset 
between laser scanner and motor, and the timestamp offset be-
tween laser scanner and camera. To exclude the possibility of 
an unknown correlation between both timestamp offsets, we 
evaluated our criteria for different combinations of these two 
parameters and came to the conclusion that these parameters 
are indeed uncorrelated.

Table 1. Results of the stationary offset computation prior to 
data acquisition.

No. Offset [ms] Magnitude of motion d
1 24.3 0.0037
2 23.4 0.0314
3 23.9 0.0203
4 24.1 0.0070
5 23.8 0.0220
6 24.6 0.0194

(a)

(b)

Figure 5. Results generated by the stationary approach to 
calculate timestamp offsets prior to data acquisition. The 
measurement graphs belong to experiments whose results 
are depicted in Table 1: (a) Experiment No. 1, and (b) 
Experiment No. 4.

(a)

(b)

(c)

(d)
Figure 6. Maps generated using the discussed SLAM 
approach. Point clouds are color coded by elevation to 
generate 3D perception: (a) Metro station, (b) Parking area, 
(c) Cemetery, and (d) Lecture room
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Laser Scanner to Motor
For all introduced datasets, we executed our approach to 
determine the offset between the timestamps of the laser scan-
ner and the motor that was previously presented. The results 
are depicted in Table 2. We strove for the same accuracy as 
shown in the previous subsection, and thus used the ranges 
for the timestamp offset as depicted there.

The offsets presented are determined by evaluating the 
two criteria previously introduced, namely the total number 
of matches n and the average error per match e in the sweep 
to map registration. After examining the results, we decided 
to fit a second-degree polynomial to our data and determine 
its extremum. It can be seen that both criteria lead to similar 
results for all four datasets. Similar to our stationary method 
that determines the timestamp offset prior to data acquisition, 
the average offset over all four datasets amounts to 23.7 ms for 
both criteria.

Figure 7 displays the measurement graphs for both criteria 
evaluated on the parking area dataset. In Figure 7a it becomes 
evident that the second-degree polynomial fitted to the total 
number of matches n approaches its maximum at 23.8 ms. Simi-
larly, in Figure 7b it can be seen that the second-degree polyno-
mial fitted to the average error per match  has its minimum at 
23.7 ms. 

Those two graphs are exemplary for all four datasets, and 
thus it can be concluded that the timestamp offset has a great 
effect on the quality of results produced by the presented 
SLAM approach. This can be observed by both the major drop 
of the total number of matches e and the large growth of the 
average error per match  if the offset deviates by more than 3 
ms from the extremum.

Laser Scanner to Camera
Similarly, we utilized our motion-based approach to deter-
mine the timestamp offset between laser scanner and camera. 
After examining the data points computed by our approach, 
we again decided to fit a second-degree polynomial to our 
data. The relevant extrema are depicted in Table 3. For this 
sensor combination we depict results with an accuracy of 1 
ms since we did not see noteworthy improvements of both 
criteria with an accuracy of 0.1 ms.

Figure 8 displays the measurement graphs for both criteria 
evaluated on the metro station dataset. In Figure 8a it be-
comes evident that the second-degree polynomial fitted to the 
total number of matches n approaches its maximum at 140 
ms. Similarly, in Figure 8b, it can be seen that the second-de-
gree polynomial fitted to the average error per match e has its 
minimum at 137 ms. Again, these two graphs are exemplary 
for all four datasets, and thus show the relevance of an appro-
priate timestamp offset between laser scanner and camera.

Table 2. Results of the offset computation between laser 
scanner and motor for all four datasets and for both criteria 
that were introduced.

Dataset
Offset using the total 

number of matches n [ms]
Offset using the average 
error per match e [ms]

Metro station 23.9 24.1
Parking area 23.8 23.7

Cemetery 23.6 23.3
Lecture room 23.6 23.8

(a)

(b)
Figure 7. Measurement graphs for the timestamp offset 
between laser scanner and motor for the parking area 
dataset: (a) Total number of matches n, and (b) Average 
error per match e.

Table 3. Results of the offset computation between laser 
scanner and camera for all four datasets and for both criteria 
that were introduced.

Dataset
Offset using the total 

number of matches n [ms]
Offset using the average 
error per match e [ms]

Metro station 140 137
Parking area 90 83

Cemetery 76 59
Lecture room 100 96

(a)

(b)
Figure 8. Measurement graphs for the timestamp offset 
between laser scanner and camera for the metro station 
dataset: (a) Total number of matches n, and (b) Average error 
per match e.
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Discussion
Laser Scanner to Motor
As can be seen in the previous section the calculated time-
stamp offset ranges from 23.4 ms to 24.6 ms for our stationary 
method and from 23.3 ms to 24.1 ms for our motion-based ap-
proach. In sum, both approaches yield the same average of ap-
proximately 24 ms over all experiments. Thus, it can be con-
cluded that the calculated timestamp offsets coincide for both 
methods within an accuracy of 1 ms. This means that both 
approaches are convenient to determine the timestamp offset 
between laser scanner and motor. Furthermore, this shows that 
the results reflect reality with a high probability since both 
methods operate independently on different data and with dif-
ferent criteria while still obtaining the same results.

Moreover, it is evident, considering especially the results 
for our motion-based method using those large datasets, that 
an accuracy of 1 ms is sufficient for our purpose. As can 
be seen from Figure 7, the criteria of our experiments stay 
around the same level for offsets between 23.5 ms and 24.5 
ms which makes it sufficient to choose an offset within this 
range for appropriate results of the SLAM algorithm. Thus, it 
can be stated that a timestamp offset within an accuracy of 1 
ms is adequate.

Another important finding is that we get similar results for 
the polynomial’s extrema irrespective of whether we use in-
tervals of 0.1 ms or 1 ms to evaluate our criteria as previously 
described. This suggests that even if we strive for an accuracy 
of 0.1 ms we can reduce the number of iterations by fitting 
an appropriate polynomial to our data points that are gath-
ered with an accuracy of 1 ms. We did not use a curve-fitting 
algorithm for our stationary approach since the number of it-
erations is not as important as for our motion-based approach. 
This is because the datasets for our stationary approach last 
only a few seconds, and thus an iteration does not take long.

In summary, the results indicate that both presented ap-
proaches are able to achieve the goal of determining the time-
stamp offset between laser scanner and motor. The decision 
as to which method should be used depends on the available 
data. If the dataset, the offset should be calculated for, is 
already available, the motion-based method can be used to 
avoid setting up the system again. However, if the timestamp 
offset is required for online calculations, it is inevitable to run 
the stationary method before starting those calculations.

To show the influence of the timestamp offset between la-
ser scanner and motor on the final result, we depict two point 
clouds that are obtained using different timestamp offsets. 
While all other parameters remain unchanged, the timestamp 
offset is set to 24 ms for Figure 9 and to 19 ms for Figure 10. 
Both figures show point clouds that originate from the metro 
station dataset in top view (cf. Figure 6a).

The greatest difference is recognizable for the pillar in the 
center of both figures. While for Figure 9 the pillar is easily 
observable in the shape of a hexagon, it is not obvious for 
Figure 10. Likewise, the stairs that can be seen on the left and 
right side for both point clouds are more distinct for Figure 9. 
Thus, it can be stated that the point cloud in Figure 9 indi-
cates a greater clarity. Furthermore, it becomes evident again 
that the timestamp offset between laser scanner and motor 
has a great effect on the resulting point cloud as an adjust-
ment of merely 5 ms leads to a lower perceived clarity for our 
experiments.

Laser Scanner to Camera
Again, both criteria induce similar results for all four datas-
ets, and thus are equally appropriate to use. Nevertheless, we 
were not able to find offsets with the same accuracy as for the 
laser scanner to motor synchronization which can be observed 
by the fact that the plateau of the polynomial in Figure 8a is 

much wider than the plateau in Figure 7a. However, since the 
images of the camera are only used as an initial guess for the 
motion estimation, these results were to be expected. Recall 
that the lidar odometry algorithm uses the motion estimate 
from the visual odometry to project the laser scan points to 
the beginning of the sweep. Afterwards, the lidar odometry 
algorithm determines the remaining drift for an entire sweep 
that cannot be determined using the visual odometry. This 
means, that the lidar odometry algorithm can compensate for 
small timestamp offset errors in the optimization step that 
is supposed to find the drift for a sweep. The laser scanner’s 
measurements, however, are directly linked to both our crite-
ria since an incorrect timestamp offset between laser scanner 
and motor leads to erroneously transformed 3D points, which 
in turn lead to a worse performance of the SLAM algorithm.

Again, the number of iterations needed to find the time-
stamp offset can be reduced by selecting larger intervals for 
the determination of data points and fitting a second-degree 
polynomial to these data points. For our datasets an interval 
of 10 ms between data points is sufficient to obtain similar 
results as for an interval of 1 ms.

The results for the timestamp offset between laser scan-
ner and camera range from 59 ms to 140 ms, and thus show a 
much wider gap than our results for the laser scanner to mo-
tor synchronization. Additionally, Figure 8 shows that an off-
set of 59 ms (that is optimal for the cemetery dataset in terms 
of the average error per match) is far from the optimum for 
the metro station dataset and leads to 14 percent less matches 
for this dataset. This suggests that we cannot find an optimal 
timestamp offset between laser scanner and camera that is 
valid for all four datasets, and thus we refrain from specifying 
an average over those four datasets. A possible reason might 
be the synchronization of the computer’s clocks using NTP. 
NTP updates the synchronization parameters between both 

Figure 9. Map section generated by the SLAM approach for 
the metro station dataset using an  appropriate timestamp 
offset between laser scanner and motor of 24 ms.

Figure 10. Map section generated by the SLAM approach for 
the metro station dataset using an inappropriate timestamp 
offset between laser scanner and motor of 19 ms.
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until the synchronization is accurate. We were not able to 
record all datasets in a row, but rather had to shut down both 
the Kontron PC and the Tegra board in between our measure-
ments. Thus, upon restart the clocks had to be synchronized 
again using NTP which may have led to different timestamp 
offsets between both systems, and, consequently, between 
both sensors. We do not face this problem for the laser scan-
ner to motor synchronization since both sensors are attached 
to the same computer. To obtain a constant timestamp offset 
between laser scanner and camera, it would be advisable to 
connect both sensors to a common computer with enough 
processing power to handle both sensor’s datastreams. 

Similarly as for the laser scanner to motor synchronization, 
we show the influence of an inappropriate timestamp offset 
between laser scanner and camera by comparing the same 
map section for two different offsets. Both figures show the 
lecture room in top view and some parts of its surroundings. 
To create those maps, we carried our multi-sensor system 
through the lecture room at first and then took a walk around 
the building. We chose an appropriate timestamp offset of 100 
ms for Figure 11, and thus it can be seen that the inner and 
outer walls of the room align perfectly parallel. In contrast to 
that, the inner and outer walls in Figure 12 are not parallel 
since we chose an inappropriate timestamp offset of 180 ms.

However, the local clarity - which is the clarity for indi-
vidual, small parts of the map (e.g., the clarity of the outer 
wall) - in Figure 12 is comparable to that in Figure 11. This 
is in contrast to the laser scanner to motor synchronization 
where the local clarity decreases for an inappropriate time-
stamp offset (cf. Figure 10). One possible explanation for 
these observations could be that the SLAM approach does not 
need an accurate initial motion estimation from the visual 
odometry to produce locally accurate results. For the global 

motion estimation, however, it needs these initial motion es-
timations to be correct in order to find the correct matches in 
the lidar odometry algorithm. In summary, it can be said that 
the timestamp offset between laser scanner and camera needs 
to be determined appropriately to generate accurate results.

Conclusions and Future Work 
Incorrect synchronization for a multi-sensor system can lead 
to an erroneous motion estimation and distortion in the re-
sulting point clouds when using it to solve the SLAM problem. 
To solve the problem of synchronization between an actuated 
laser scanner and its motor we presented two independent ap-
proaches to calculate the timestamp offset between these two 
devices. Both use different parts of a SLAM approach proposed 
by J. Zhang and Singh (2015) and distinct criteria to find an 
appropriate offset. Moreover, our motion-based approach can 
be further used to find the timestamp offset between a laser 
scanner and a camera.

Our experiments have shown that both approaches yield 
similar results within an accuracy of 1 ms for the laser scan-
ner to motor synchronization. However, the experimental 
results also showed that an accuracy of 1 ms is sufficient. 
Thus, it can be stated that both methods are convenient to 
determine the desired offset. Furthermore, we managed to 
find an appropriate timestamp offset between laser scan-
ner and camera using our motion-based approach, and thus 
think that the underlying idea can be used for arbitrary sensor 
combinations. However, it should be noted that different 
experimental setups might yield different accuracies for the 
timestamp offset if the distance to objects and the robot’s 
movement characteristics vary from our experiments. Finally, 
we were able to demonstrate the negative effect an incorrect 
synchronization within our multi-sensor system can have on 
the resulting point clouds and the motion estimation.

Future work involves applying the motion-based approach 
to other sensor combinations that are fused in a similar SLAM 
approach. Additionally, an approach similar to our stationary 
method should be developed especially for the laser scanner 
to camera synchronization in order to provide a reference to 
results from the motion-based approach. Moreover, we plan to 
find out why the timestamp offset between laser scanner and 
camera was not constant across all datasets. Finally, we aim 
to make precise statements about our approach’s accuracy by 
evaluating the slope of our fitted polynomials and examine 
which influence the distance to objects and the robot’s move-
ment characteristics have on the accuracy.
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