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Abstract—To properly fuse IMU and camera information
for robotics applications, the relative timestamp offset between
both sensors’ data streams has to be considered. However,
finding the exact timestamp offset is often impossible. Thus, it
is necessary to additionally consider the offset’s uncertainty if
we want to produce reliable results. In order to find the offset
and its uncertainty, we determine orientation estimates from
IMU and camera under interval uncertainty. Subsequently,
these intervals are used as a common representation for our
bounded-error approach that finds an interval enclosing the
true offset while also modeling the uncertainty. Calibration
data can be acquired in a few seconds using a simple setup of
IMU, camera and camera target. Results using both simulated
and real data demonstrate that we are able to determine the
offset to an accuracy of 20 ms with a computation time that
is suitable for future online applications. Here, our approach
could be used to monitor the timestamp offset in a guaranteed
way. Additionally, our method can be adapted to determine
an interval for the rotation between both sensors. While this
increases the computation time drastically, it also enhances the
accuracy of the timestamp offset to less than 10 ms.

I. INTRODUCTION

To localize themselves in known or unknown environ-
ments, robots are often equipped with an inertial measure-
ment unit (IMU) and a camera. Traditionally, probabilis-
tic approaches are employed for data fusion of these two
sensors, but recent work also deals with sensor fusion in
a bounded-error context [1], [2]. However, fusion of data
requires knowledge about the relative timing of the sensors’
measurements. Otherwise, the localization algorithm will
produce less accurate or even significantly wrong results.

Since commercial off-the-shelf sensors are generally
black-box systems, it is not possible to use algorithms like
the Network Time Protocol (NTP) [3] to synchronize the
sensors’ clocks. Nevertheless, it is possible to timestamp
messages as they arrive at a common host computer, use the
sensor’s clock to timestamp messages or to infer timestamps
from the sensor’s rate. However, this may lead to a temporal
offset between both sensors’ data streams due to the offset
between the sensors’ clocks, different bus topologies (e.g.
USB vs. serial), signal pre-processing, etc. To determine this
offset, many probabilistic approaches have been investigated.

In the case of [4], the authors describe an iterative ap-
proach to determine the timestamp offset between camera
and IMU data. They formulate the calibration as a regis-
tration problem and try to find correspondences between
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both sensors’ measurements which allow them to infer the
offset. Similar approaches are investigated by Mair et al. [5].
They compare cross correlation and phase congruency - two
methods that can be used to align sensor measurements
in time. Rehder et al. [6] present a general framework
for spatiotemporal calibration, which is the calibration of
spatial transformations and temporal offsets between sensors.
They translate the problem into a maximum likelihood
estimation by employing analytical basis functions. Another
similar method that we investigated previously, is to find the
timestamp offset in post-processing [7]. This approach fuses
information from different sensors and adjusts the offset such
that the sensor fusion results are optimal according to some
pre-defined criteria (e.g. clarity of the map).

All works presented so far have in common that they
assume a constant temporal offset and neglect the offset’s
uncertainty. In contrast to that, Li and Mourikis [8] present
an online approach to estimate the time offset for camera-
IMU systems which takes its uncertainty into account. They
include the timestamp offset into the state vector of their
extended Kalman filter. Thereby, it is possible to track time-
varying offsets and to model the uncertainty in the covariance
matrix in a stochastic way. However, we are interested in
finding guaranteed bounds enclosing the offset.

Marzullo and Owicki [9] introduce the interval paradigm
for clock synchronization in infrastructure networks. Ex-
pressing the timestamp offset with an unknown but bounded
error has the following advantages. First, jitter (i.e. random
error), which is naturally bounded, can be included directly
into the interval. Secondly, unknown systematic errors that
are problematic in probabilistic error modelling can be
naturally included in intervals. Thirdly, since the intervals
are guaranteed, different computations of the offset can be
combined by means of intersection without additional knowl-
edge about the underlying data quality. Furthermore, interval
methods that perform sensor fusion [1] can only guarantee
results if a guaranteed timestamp offset is considered.

In this context, Olson [10] introduces a method to compute
a lower bound for the timestamp offset between sensor and
host computer. His approach fits the bounded-error context,
although it computes no interval for the offset but a lower
bound only. The only work that tries to find an interval for
the relative timestamp offset between two sensors is proposed
by Zaman and Illingworth [11]. The authors apply an event-
based approach to constrain the interval for the systematic
delay between both sensors’ data streams. However, their
method relies on a large number of events which have to be
detected accurately during extensive experiments.



To overcome this drawback, we propose the first approach
to determine a guaranteed interval for the timestamp offset
using continuous sensor measurements that can be acquired
in a few seconds. In order to do that, we assume a constant
timestamp offset and find correspondences in the sensors’
data streams using orientation measurements. These orienta-
tion measurements are generated by rotating our sensors in
front of a camera target. The assumption about a constant
offset is valid since we acquire data in a short time frame
such that any drift between the sensors’ clocks can be
neglected. Naturally, the interval for the timestamp offset is
guaranteed only if our assumptions about the sensors’ error
bounds are correct. These error bounds and our approach to
determine them are depicted in Section IV.

Our method can be used in two different ways: In the one-
dimensional case, an interval vector enclosing the rotation
between the sensors’ coordinate systems has to be estimated
beforehand and only the timestamp offset is unknown. Sub-
sequently, the one-dimensional problem can be solved with
little computation time. This allows to monitor the timestamp
offset or to increase its accuracy in online applications.

The four-dimensional problem, on the other hand, requires
plenty of computation time, because the three-dimensional
rotation between the sensors’ coordinate systems has to be
computed as well. Nevertheless, this leads to a more accurate
solution for the timestamp offset. The results can be further
utilized in online applications or to validate results from
probabilistic calibration methods. In summary, the contribu-
tions of this paper are as follows:

o Similar to [12], we propose an algorithm to solve the

Perspective-n-Point problem in a bounded-error context.
This algorithm does not need initial estimates to con-
verge to a guaranteed solution set (see Section V-A).

o We present an idea to determine a guaranteed interval
for an IMU’s relative orientation using angular velocity
measurements that are affected by an unknown but
bounded error (see Section V-B).

o We propose a method to determine the timestamp offset
and rotation between camera and IMU in a bounded-
error context using previously computed orientation
estimates (see Section VI).

o We demonstrate the feasibility of our method using both
simulated and real data (see Section VII).

II. INTERVAL ANALYSIS
This section introduces the basics of interval analysis - a
nonprobabilistic approach to define bounds for measurement
errors. We put an emphasis on contractors and their appli-
cation in the SIVIA (Set Inversion via Interval Analysis)
algorithm. Definitions and algorithms are derived from [13].

A. Basic Notions
A closed and connected subset of R is an interval
[] =[z,T]| ={zeR|z<z<T}, (1)
where z and T denote the lower and upper bounds of [z].

The width of an interval [z] is defined as w ([z]) = T — z.
IR denotes the set of all intervals.

An interval box [x] € IR"™ is defined as the Cartesian
Product of n closed intervals. Accordingly, its width is
defined as w ([x]) = maxi<;<n (w ([x4])).

The four classical real arithmetic operators addition (+),
subtraction (—), multiplication (-) and division (/) are ex-
tended to interval arithmetic, e.g. [z] + [y] = [z + ¥, T + 7.
Similarly, elementary functions such as Sine or Cosine can be
extended to interval arithmetic. This is done by introducing
the notion of an inclusion function.

Let f : R™ — R™. The interval function [f] : IR" — IR™
is an inclusion function for f if

() C [f] (), Vx] € IR, 2)

We obtain the natural inclusion function for a function f by
replacing each operator in its expression by the correspond-
ing interval operator. To compute the inverse solution set

X={xecR"|f(x)eY}=Ff"(Y), 3)

where Y is a subset of R™, we use Set Inversion Via Interval
Analysis (SIVIA).

B. Contractor Programming
A Constraint Satisfaction Problem (CSP) is defined as a

system of n, variables z; € R, ¢ € {1,...,n,} that are
linked by n; relations (or constraints). It has the form
fj(ajl,:r:z,...wnw)zo,je{l,...,nf}, (4)

where each variable z; belongs to an interval [z;]. This
equation can be rewritten in vector form as f (x) = 0, where
x = (z1,...,2,,)" and [x] = [z1] X - -+ X [z, ] is the prior
domain for x.

The CSP ‘H can be formulated as

H:(f(x)=0, x€ [x]). (5)

A possible solution to H is a mapping that assigns a
value from its domain to each variable s.t. all constraints
are satisfied. Accordingly, the solution set S of H is defined
asS={xex]|f(x)=0}.

To gain a smaller box that still contains the solution set,
a contractor C is applied to the CSP. This means that [x] is
replaced by a smaller domain [x'] C [x] s.t. S C [x]. The
contractor that replaces [x] by the smallest box that contains
S is denoted as optimal.

While there exist many different contractors, one of the
most efficient is the forward-backward contractor that is
based on constraint propagation [14]. This contractor works
by decomposing all constraints in primitive constraints and
taking them into account in isolation. Depending on the
constraints’ properties and order, this contractor may need
to be applied several times to find the smallest possible box.

C. Tubes

A set of trajectories - or orientations over the course of
time - can be described by means of tubes. In our case, a tube
encloses an uncertain orientation p(-) over the course of time
[to,tf]. We use the formal definition given in [15]. A tube
[p](-) : R — IR"™ is an interval of two orientation functions
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Fig. 1. An orientation tube [p](-) enclosing an orientation function p*(-).

[p(+),P(+)] such that Vt : p(t) < p(¢). An orientation function
p(-) belongs to the orientation tube [p](-) if V¢ : p(t) €
[p](t). Fig. 1 depicts an orientation tube [p](-) enclosing an
orientation function p*(-). The interval at ¢; is [p](¢1). If no
orientation measurement is available for any point in time ¢,
we use linear interpolation between the adjacent orientation
measurement intervals.

I1I. MODIFIED RODRIGUES PARAMETERS

To represent orientations we use the Modified Rodrigues
Parameters (MRP) [16]. They have the advantages that the
singular points are as far away from the origin as possible
and that the composition of two orientations can be calcu-
lated straightforward. These are important properties for an
orientation representation that is used in conjunction with
interval analysis since the evaluation of sequential rotations
should not lead to a large overestimation.

Let q be a quaternion, that is defined as

q0
el g\ _ [ cos(6/2)
4= g2 _(q13>_<nsin(0/2))’ ©
qs

where 7 is a unit vector representing the rotation axis and 6

is the angle of rotation. The 3 x 1 MRP vector is defined as
d13

= =ntan(0/4). 7

p= e = mtan(0/4) @

The 3 x 3 rotation matrix for p is
R 2\ A
85 +4 (1 loll’) 5
2
2
(1+ o))

where p is the skew matrix of p and ||p|| is the norm of p.
Sequential rotation by ¢ and then by p is denoted by the
bullet operator (e) and defined as

(1=llel*) e+ (1= l1¢l*) p—20p

R(p) =15 +

ped= ©)
L+ [pl*[8° —2p7¢
Another useful property of the MRP is that
R7(p) =R(-p), (10)

which allows direct computation of the inverse rotation.

(a) 3D target

(b) Multi-sensor system

Fig. 2. Setup for the timestamp offset calibration.

IV. SETUP

Our setup for the timestamp offset calibration can be seen
in Fig. 2. The 3D target that is placed in the camera’s field of
view is shown on the left side. It consists of three perpendicu-
lar checkerboards that are augmented by Aruco markers [17]
to distinguish between them. We assume a printing accuracy
of [Aw] =[-1,1] mm for each checkerboard.

On the right side, the experimental setup of our multi-
sensor system is depicted. It is composed of a Point Grey
Grasshopper3 USB3 vision camera and a Microstrain 3DM-
GQ4-45 inertial sensor. A single consumer-grade laptop
(Intel Core i7 @ 2.7 GHz x 8, 16 GB RAM) is used to
acquire measurement data and run the computations. Both
sensors are attached via USB. To implement interval methods
we use the IBEX library [18].

For our experiments we operate the camera at a resolution
of 1920x1200 px and a frame rate of 25 FPS. Before
acquiring data, we calibrated our camera intrinsically using
the algorithm proposed by Zhang [19] and its implementation
in the Open Source Computer Vision Library (OpenCV).
Using those intrinsic calibration parameters we removed dis-
tortion from each image before processing it. The camera’s
coordinate system is denoted as C' with its z-axis pointing in
the viewing direction, x-axis pointing to the right and y-axis
pointing down. Cj denotes the camera’s initial coordinate
system at the beginning of an experiment. Since not much
information is available from the data sheet, we use the
maximum reprojection error that occurred during camera
calibration to bound the camera’s error. This amounts to a
maximum error of [Ag| = [—0.3,0.3] px for each detection
of a checkerboard feature.

The IMU is operated at a frequency of 100 Hz. We denote
the IMU’s coordinate system as [ and its initial coordinate
system at the beginning of an experiment as I. Similar to
the camera, we acquired the IMU’s maximum error from
data sheets and own experiments. This error is composed of

e a 3 x 1 bias/noise vector [b] that encloses the gyro-
scope’s systematic and random offset from 0. For our
IMU: [b] = ([-0.01,0.01]«3)°,

e a 3 x 1 scale factor stability vector [s] that encloses
a proportional scaling from true velocity to measured
velocity. For our IMU: [s] = ([—0.5,0.5]x3) %.



V. MULTI-SENSOR SYSTEM MODEL

We transfer the idea depicted in [4] to the field of interval
analysis to determine not only the timestamp offset between
camera and IMU but also its uncertainty. In order to find a
relation between the data from IMU and camera, we require
a common representation. For this work, we use orientation
measurements that are generated by rotating the setup in front
of the static camera target as a common representation. For
every camera image, we calculate the pose relative to the 3D
target. Afterwards, the pose estimates enable us to calculate
the sequential rotation from the camera’s initial pose to every
other pose. For the IMU, we integrate the angular velocity
measurements to find the orientation relative to the IMU’s
initial pose. At every point in time ¢; it must hold:

(an

o 7 is the timestamp offset between camera and IMU,

o pl is the MRP vector defining the constant orientation
of the camera in the IMU frame,

. pgo (t;) is the MRP vector describing the orientation of
the camera at time ¢; relative to its initial orientation,

e plo(t;) is the MRP vector describing the orientation of
the IMU at time ¢; relative to its initial orientation.

—pl @ p(ti+ 1) pl = P (ta),

In words, this means that at every point in time both
sensors’ orientation estimates have to coincide. This is be-
cause they are rigidly mounted, and consequently rotated
at the same time. However, a constant timestamp offset 7
between the sensors introduces a constant delay between
their orientation estimates.

Since we assume an unknown but bounded error for both
sensors, the variables in (11) are required to belong to their
respective domain:

7 el pk € oLl PP() € [PP10), 2 () € [p20().
12)

For further explanation, let p5, = (0 0 0)T, which means
that there is no rotation between the sensors’ coordinate
systems. Fig. 3 depicts the idea for one dimension of (11).
Let [a](-) be the first row of [pS°](+), which is the camera’s
orientation tube. Similarly, let [b](-) be the first row of
[p™](-), which is the IMU’s orientation tube. Now, [a](t;)
is the interval enclosing the camera’s orientation at time ¢;.
Likewise, [b](¢; 4+ [7]) is the interval enclosing the camera’s
orientation during the time interval ¢; + [7]. We require that
Vt; the intersection [a](t;) N [b](¢; + [7]) is non-empty. As
can be seen, this intersection is non-empty in our example.
However, a different choice of [r] may lead to an empty
intersection. We aim to find the set of all 7 € [r] which lead
to a non-empty intersection V¢;.

For our experiments, we use the sensors’ clocks to
timestamp the data to ensure that jitter caused by non-
deterministic transmission times or the operating system can
be disregarded. Drift can be neglected since we acquire data
in a short time frame. Before we explain the algorithm to
determine an interval [r] for 7 in Section VI, we introduce
our methods to find the orientation estimates for the camera
(cf. Section V-A) and the IMU (cf. Section V-B).

orientation
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Fig. 3. Example depicting the idea of (11). [a](-) is the tube enclosing one
dimension of the camera’s orientation. Similarly, [b](-) is the tube enclosing
one dimension of the IMU’s orientation. We aim to find the set of all 7 €
[7] such that both orientation tubes overlap for every point in time. This
requirement is fulfilled for the exemplary [r] = [r,7| at time ¢; since
[a](t1) and [b](¢t1 + [7]) share a common intersection (green interval on
the orientation axis).

A. Perspective-n-Point Under Interval Uncertainty

To obtain an interval for the camera’s orientation we solve
the Perspective-n-Point problem under interval uncertainty.
Given a set of n 3D points in a predefined world coordinate
system X" = (XW YW ZW)T, their corresponding 2D
points X! = (u,v)T in the image and intrinsic camera cali-
bration parameters, the problem is to estimate the camera’s
pose in the world frame. The pose consists of a 3 x 3 rotation
matrix R(p) that is expressed using a 3 x 1 MRP vector p
(cf. (8)) and a 3 x 1 translation vector T.

The rigid body transformation is expressed as follows:

XY =R(p) X" + T, (13)

where X¢ = (XYY Z)T are the coordinates of the
projection of X" in the camera frame.

By rewriting (13) and eliminating the unknown depth Z c.
two equations remain:

(Ry — z°Ra)XW + Ty — 29Ty =0, (14)
(R2 —y“Re)X" + T T3 =0, (15
where x¢ = (z¢,y%, 1)T = ()Z‘—E, ‘g—ﬁ, 1)T is the normalized

term of X¢. R; and T}, i € {1,2,3}, are the i-th row of
R(p) and T, respectively.

By applying the pinhole camera model [19], ¢ and 3¢
can be expressed as follows:

c U—cy c v—gy
AP
where (c;,c,) is the principal point and f,, f, are the
camera’s focal length expressed in pixel units.
Substituting (16) into (14)-(15) we derive two equations
for every checkerboard feature. Stacking the equations, we
obtain the constraints

(16)

C(p,T) =0, 7)

where C has 2n rows.
We assume an unknown but bounded error [Ay] for
each 3D coordinate. Likewise, we assume an unknown but



Fig. 4. Exaggerated example of a 2D bounding box for feature detection.

bounded error [A¢] for the checkerboard feature detection
(cf. Section IV). This results in a 2D bounding box as
depicted in Fig. 4. Although we do not use intervals for the
camera parameters explicitly, their uncertainty is included in
the features’” uncertainty. [X"] and [X!] are computed as

X" =X + [Aw], (18)
(X=X, +[Ac], (19)

where X" are the 3D coordinates of a checkerboard feature
and X! is the detected checkerboard feature in pixels.
The CSP ‘H can be formulated as

H: <C(p,T) =0,
(20)
pemwrewLXWkaWLXIemﬂ)

where [p] and [T are the domains for the pose parameters.

Initially, we set [T] = ([—o0, o0, [—00, 0], [0, 00])T since
we have no prior information about the translation parame-
ters except that we use a front-looking camera. Accordingly,
we set [p] = ([—1,1]«3)" since we have no prior information
about the orientation parameters.

To solve H, a forward-backward contractor is built for the
constraints C. Subsequently, the contractor and the initial
domains for the pose parameters are fed into SIVIA to com-
pute an outer approximation for the translation parameters
[T] and the orientation parameters [p]. If the intervals are
empty, the constraints C did not hold due to detection errors
or wrong bounds on the measurement uncertainty. In this
case, we discard the measurement and do not use it for
the offset computation. Note that this procedure works as
an outlier detection. However, it may happen that the error
is small enough to not produce empty intervals while still
exceeding the 2D/3D error bounds. In this case, we cannot
detect the outlier. Nevertheless, outliers are rare in practice
and exceed the error bounds drastically if they occur (e.g. in
the case of a misdetection by the feature detector).

Ultimately, we are interested in the MRP vector describing
the orientation of the camera relative to its initial orientation.
We denote the outer approximation of the orientation param-
eters that were calculated for the image captured at time ¢
with [p$,](¢) since they describe the orientation of the world
frame relative to the camera frame. The initial orientation is

5] = () P ](8), @1

t<6:

where d; is the time for which the system remains in its
reference orientation (i.e. we do not move it).

Finally, the orientation tube describing the relative rotation
from the initial orientation is

[P 10) = oyl o —[PW1()-

To increase the accuracy of our orientation estimates,
we perform the described method for each of the three
checkerboard planes of our 3D target. Since each tube
[pE°](-) is guaranteed to contain the true orientation, the
intersection of the three tubes that were calculated for the

three checkerboards is also guaranteed to contain the true
orientation.

(22)

B. IMU Orientation Under Interval Uncertainty

We assume an unknown but bounded error for the IMU’s
angular velocity measurements. This error is composed of a
3 x 1 bias/noise vector [b] and a 3 x 1 scale factor stability
vector [s] as depicted in Section IV.

The resulting 3 x 1 interval vector for the IMU’s angular
velocity estimates is calculated as

(W] () = wl,(t) + [b] + [s] - w}, (1), (23)

where w! (t) is the IMU’s angular velocity measurement.

To obtain an interval for the IMU’s orientation, we use the
MRP kinematic differential equation:

p(t) = 1 (1= 1)) s+ 2p00) +2(0)) i),
(24)
where w(t) is the true 3 x 1 angular velocity vector.

Since our angular velocity estimates at time ¢ are described
as an interval vector [w](t), we use the natural inclusion
function for (24). Subsequently, first-order integration of this
inclusion function leads to an orientation tube that we denote
by [p™]() since it describes the IMU’s relative orientation
over time. Because of the integration, the interval widths
increase over time, and thus reflect the orientation estimate’s
increasing uncertainty that is caused by drift.

VI. TIMESTAMP OFFSET CALIBRATION

The general idea to determine the temporal offset between
camera and IMU is to use SIVIA to find all 7 € [7] that
satisfy (11). At first, we determine the three-dimensional
camera orientation tube [p5°](-) as depicted in Section V-A.
Typically, SIVIA outputs a subpaving. However, for further
computations we build the camera orientation tube using the
convex hull of that subpaving to reduce complexity. Addi-
tionally, we find the three-dimensional IMU orientation tube
[pX](-) as depicted in Section V-B. Besides, the algorithm
needs initial estimates for the timestamp offset domain [7]
and the rotation domain [pl].

Algorithm 1 depicts our method. Instead of a contractor,
we employ a check whether (11) holds for all camera
orientations (cf. lines 5-15). In order to do that, it is first
necessary to determine the IMU orientation at time [¢;] =
t; + [r], where t; is the timestamp of the current camera
orientation and [7] is the timestamp offset interval for the



current iteration of SIVIA (line 7). Since [¢;] is an interval,
we have to find an interval for [pi°] ([t;]) that encloses all
possible IMU orientations during [¢;] = [t;, ;] as follows:

) () = o) () u | U [ol) ) | U led] ().
(25)
where [p°] (;) and [p}°] (%;) are determined using linear
interpolation on the bounds of the three-dimensional MRP
interval vectors. Linear interpolation is applicable, since the
IMU measurements are available with a high frequency.

Subsequently, the IMU orientation measurement needs
to be transformed into the camera coordinate system. We
evaluate and rearrange the single components of the expres-
sion f,,,, == —a e b e a such that each component of b
appears only once in each component of f,,,.,. Subsequently,
the rearranged expression allows us to determine a tighter
interval for [p/][(¢;)] (line 8). We omit the full expression at
this point due to its size.

Afterwards, the algorithm checks the set membership
relation of the transformed IMU MRP vector [p'][(¢;)] and
the camera MRP vector [pgo](ti) (lines 9-14). If both MRP
vectors do not overlap, the membership variable is set
to 0 and we continue with the next iteration of SIVIA,
since (11) did not hold for all camera orientations. If they

Algorithm 1: SIVIA for timestamp offset

input : [ro], [pC], [1°](), [PE']()
output: £, which is a subpaving for [7]

1 S = {[T()]} 5
2 while S is not empty do

/'S is a stack

3| [ =1top(S);

4 membership = 2;

5 foreach t; € T, era do // for all camera orientations
6 [t:] =t + [T];

y [pf] ([t:]) = interpolate (p]'](-), [t]):
y P1t)] = (~[pE] o [P1 (11]) « [0E]):
9 if ['][(t:)] N [pE*](t:) = 0 then

10 membership := 0;

11 break;

12 else if [p][(t:)] \ [p5°](t;) # O then

13 ‘ membership = 1;

14 end

15 end

16 if membership == 0 then

17 | continue;

18 else if w ([7]) < € or membership == 2 then
19 | £L:=LU{[r]};

20 else if membership == 1 then

21 ([11], [r2]) = bisect ([7]);

22 S =8SU{[n]}u{lml}

23 end

24 end

overlap but [p'][(t;)] is not completely inside [pS°](t;), the
membership variable is set to 1 since we need to further
bisect [7]. However, if every [p'][(t;)] is completely inside
the corresponding [pgo](ti), the membership variable is not
changed and remains at 2. This means that (11) holds for
every 7 € [7], and thus we can add [7] to the solution set L.

It is also possible to find an outer approximation for the
rotation between camera and IMU frame [pl]. In order to do
that, the three components of [p5] are added as additional
variables to SIVIA s.t. the stack S contains four-dimensional
interval boxes. These four-dimensional boxes are bisected
accordingly in line 21. This increases computational com-
plexity since SIVIA has to operate in four dimensions.
However, it can also lead to tighter intervals for [7] since the
intervals in line 8 get smaller, and thus some 7 € [7] that did
not violate (11) before may violate it now. We refer to this
as the four-dimensional problem, while the one-dimensional
problem denotes a bisection of [7] only.

VII. RESULTS

To evaluate our method we execute it on both sim-
ulated data that was generated using the robot-simulator
Gazebo [20] and real data that was acquired using the setup
depicted in Section IV.

We only present results for the timestamp offset calibra-
tion introduced in Section VI. The camera orientation tube
[pS°](+) and IMU orientation tube [p1°](-) are calculated be-
forehand according to Section V-A and Section V-B. We set
€, which influences the bisection depth of SIVIA, to 0.001,
which corresponds to an interval width of 1 ms or 0.06°,
respectively. This proved to be an adequate compromise
between accuracy and computation time. Furthermore, we set
the initial interval for the offset as [r9] = [—500, 500] ms.
All depicted interval boxes are the outer enclosure of the
corresponding subpaving.

A. Simulated Data

Since there is no possibility to recover the true timestamp
offset using our real sensors, we recreated our setup in
Gazebo using the error bounds from the sensors’ data sheets.
This allows us to simulate different offsets which should be
enclosed by our algorithm. The true orientation of the camera
in the IMU frame is p5, = — (3 1 1)7 for all simulations.

Although we used different data sets to evaluate our
approach, we only present results for one data set. Here
we rotated our setup around all three axis at the same time
for 3 s with a velocity of 2 rad/s. We show results for
both the one-dimensional problem and the four-dimensional
problem. For the one-dimensional problem we bisected only
the interval for the timestamp offset [7] in Algorithm 1 and
set [pL] = —([0.32,0.34]+3)", which corresponds to an
angle uncertainty of w([f]) = 6°. For the four-dimensional
problem we bisected also the intervals for the rotation
between both sensors in Algorithm 1 starting from an initial
domain of [pL] = —([0.1,0.5]x3)", which corresponds to
an initial angle uncertainty of w([d]) = 124°.
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Fig. 5.

The results can be seen in Table I. [7];p corresponds
to the one-dimensional problem while [7]4p corresponds to
the four-dimensional problem. Note, that the true offset 7
is always enclosed in the corresponding intervals [7];p and
[T]4p- If we solve the four-dimensional problem, the rotation
between the sensors’ coordinate systems is also recovered
with an accuracy of w([f]) = 19.85° (cf. (7)). Furthermore,
it can be seen that the true offset’s deviation from zero has no
effect on the computed offset’s accuracy. Small fluctuations
can be explained by the nature of the bisection in our
algorithm.

TABLE I
SIMULATED TRUE OFFSETS (1D+4D)

(b) p2 over time.

3 4 5 0 1 2 3 4 5
(c) p3 over time.

Spatially aligned orientation tubes for the third trial that are non-overlapping due to a timestamp offset.

the column containing [7]; and a large rotation uncertainty of
w([f]) = 18° for the column containing [7]2. Fig. 5 shows
the orientation tubes for the third trial after aligning them
spatially using the estimated bounded rotation. It can be seen
that they are shifted due to the timestamp offset.

To provide some reference data, we computed the IMU’s
and camera’s orientation using traditional methods and ap-
plied cross-correlation to temporally align the data series as
described by Mair et al. [5]. The results, which can be seen
in the fourth column of Table II, are always enclosed in the
corresponding interval for the timestamp offset.

TABLE II
TIMESTAMP OFFSET ONLY (1D)

[ Trial | [r]i (ms) | [7]2 (ms) T 7xcorr (ms) |
T || [1.0,947] | [-23.4,126.0] | 488
2 || 254,762 | [2.0,102.5] 48.2
3| 293,605 | [5.9,77.1] 45.8
4 || 41.0,68.4] | [37.1,73.2) 50.9

[ 7 (ns) | [rlip (ms) | [r]l4p (ms) |
100 || [0.8,27.3] | [0.8,2L1]
—10.0 || [-21.1,7.8] | [~18.8,1.6]
20.0 8.6,37.5] | [10.9,31.3]
50.0 || [39.1,67.2] | [41.4,60.9]
B. Real Data

To gather real data we used the setup depicted in Sec-
tion IV with the interval error bounds as explained. Overall,
we collected four different data sets of different characteris-
tics. The first three data sets were recorded while rotating the
setup by hand and ensuring that the 3D target remained in
the camera’s field of view. In order to do that, we placed our
setup on the floor in front of the 3D target for initialization,
picked it up after roughly 1 s and rotated it for about 10 s.
We aimed to increase the rotational velocity from trial to
trial, s.t. the first trial contains low velocity rotations and
the third trial contains high velocity rotations. For the fourth
trial, we added a motor to our setup s.t. we could conduct
an experiment with rotation around one axis only. We set the
motor’s velocity to 1 rad/s.

Similar to our simulation studies, we decided to solve the
one-dimensional problem at first, which means that we used
a fixed interval vector for the rotation and only bisected the
interval for the timestamp offset. The results can be seen in
Table II. We estimated the three-dimensional MRP vector by
hand and added the following measurement uncertainties. We
chose a rather small rotation uncertainty of w([f]) = 6° for

The rotational velocity’s influence on the width of the
timestamp offset interval can be observed. However, it makes
no difference whether we rotate our setup by hand around
all three axis or employ a motor to achieve a rotation around
one axis only. Furthermore, note that all computed intervals
overlap, which shows that the results are consistent and
the calibration is repeatable. Since the results should be
guaranteed, it is inevitable that all computed intervals share
a common intersection. If this were not the case, we would
have discovered an inconsistency in our system. The common
intersection for our experiments is [r] = [41.0,60.5] ms.
The final uncertainty for our one-dimensional studies is
w([7]) = 19.5 ms. Naturally, this accuracy can be improved
by estimating more accurate rotation parameters.

For the results in Table III we solved the four-dimensional
problem, meaning that we bisected both the interval for the
timestamp offset and the three-dimensional MRP interval
vector for the rotation. We chose the same initial rotation
uncertainty of w([6]) = 124° as for our simulation studies.

As can be seen, we are not able to estimate the rotation
to a reasonable accuracy if we employ the motor to rotate
around one axis only. Nevertheless, we manage to contract
the three-dimensional MRP interval vectors for trials one to



TABLE III
TIMESTAMP OFFSET AND ROTATION (4D)

[ Trial [ [r] (ms) [ w([f]) (deg) |
1 27.3,68.4 12.70
2 35.2,57.6 12.24
3 37.1,51.8 12.93
4 43.0,65.4 100.72

three. Again, the intervals for the timestamp offset share a
common intersection [7] = [43.0,51.8] ms, which is also
consistent with the result of our one-dimensional studies.
Thus, the final accuracy we achieve is w([7]) = 8.8 ms.
In contrast to the one-dimensional problem, which requires
around 0.1 s computation time, the computation time for the
four-dimensional problem ranges from 10 min for the third
trial to 1 h for the first trial. The computation time for the
fourth trial amounts to 10 h since the rotation parameters do
not converge. Fig. 6 shows the camera and IMU orientation
intervals which were aligned using the computed rotation
between both sensors’ coordinate systems. Note the IMU’s
increasing uncertainty due to integration.

Py -0.2

1

Fig. 6. Aligned camera and IMU orientation intervals after calibration.

VIII. CONCLUSIONS

In this paper, we have presented a method to determine
an interval that is guaranteed to contain the timestamp offset
between IMU and camera if the sensor errors are modeled
correctly. Furthermore, the interval allows us to make state-
ments about the timestamp offset’s accuracy, which is not
considered in most approaches. For our experiments we put
an emphasis on the influence of motion characteristics during
data acquisition and showed that we are able to determine
the timestamp offset to an accuracy of less than 10 ms using
a very basic setup. Moreover, our algorithm is able to recover
an outer approximation for the rotation between the two
sensors starting from a very rough estimate.

As future work, we aim to further improve the computation
time of our method by designing a contractor on tubes.

Furthermore, we strive to employ our algorithm in online
applications by using features in the real world instead of
features on the 3D target. Afterwards, we plan to apply our
method to other sensor combinations, which have to be mod-
eled in a bounded-error context beforehand. Additionally,
we aim to incorporate the offset interval into sensor fusion
approaches to account not only for the timestamp offset but
also its uncertainty.
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